annotate fft/fftw/fftw-3.3.4/rdft/simd/common/hc2cbdftv_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:51:49 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 29 FP additions, 24 FP multiplications,
Chris@19 32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
Chris@19 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cbv.h"
Chris@19 36
Chris@19 37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 44 V Tv, Tn, Tr, Te, T4, Tg, Ta, Tf, T7, T1, Td, T2, T3, T8, T9;
Chris@19 45 V T5, T6, Th, Tj, Tb, Tp, Tx, Ti, Tc, To, Tk, Ts, Tq, Tw, Tm;
Chris@19 46 V Tl, Tu, Tt, Tz, Ty;
Chris@19 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 49 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 50 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 51 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 52 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 53 Tv = LDW(&(W[0]));
Chris@19 54 Tn = LDW(&(W[TWVL * 8]));
Chris@19 55 Tr = LDW(&(W[TWVL * 6]));
Chris@19 56 Te = VFMACONJ(T3, T2);
Chris@19 57 T4 = VFNMSCONJ(T3, T2);
Chris@19 58 Tg = VFMACONJ(T9, T8);
Chris@19 59 Ta = VFMSCONJ(T9, T8);
Chris@19 60 Tf = VFMACONJ(T6, T5);
Chris@19 61 T7 = VFNMSCONJ(T6, T5);
Chris@19 62 T1 = LDW(&(W[TWVL * 4]));
Chris@19 63 Td = LDW(&(W[TWVL * 2]));
Chris@19 64 Th = VADD(Tf, Tg);
Chris@19 65 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
Chris@19 66 Tb = VADD(T7, Ta);
Chris@19 67 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
Chris@19 68 Tx = VADD(Te, Th);
Chris@19 69 Ti = VFNMS(LDK(KP500000000), Th, Te);
Chris@19 70 Tc = VZMULI(T1, VADD(T4, Tb));
Chris@19 71 To = VFNMS(LDK(KP500000000), Tb, T4);
Chris@19 72 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
Chris@19 73 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
Chris@19 74 Tq = VZMULI(Tn, VFNMSI(Tp, To));
Chris@19 75 Tw = VZMULI(Tv, VFMAI(Tp, To));
Chris@19 76 Tm = VCONJ(VSUB(Tk, Tc));
Chris@19 77 Tl = VADD(Tc, Tk);
Chris@19 78 Tu = VCONJ(VSUB(Ts, Tq));
Chris@19 79 Tt = VADD(Tq, Ts);
Chris@19 80 Tz = VCONJ(VSUB(Tx, Tw));
Chris@19 81 Ty = VADD(Tw, Tx);
Chris@19 82 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
Chris@19 83 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
Chris@19 84 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
Chris@19 85 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
Chris@19 86 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
Chris@19 87 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
Chris@19 88 }
Chris@19 89 }
Chris@19 90 VLEAVE();
Chris@19 91 }
Chris@19 92
Chris@19 93 static const tw_instr twinstr[] = {
Chris@19 94 VTW(1, 1),
Chris@19 95 VTW(1, 2),
Chris@19 96 VTW(1, 3),
Chris@19 97 VTW(1, 4),
Chris@19 98 VTW(1, 5),
Chris@19 99 {TW_NEXT, VL, 0}
Chris@19 100 };
Chris@19 101
Chris@19 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
Chris@19 103
Chris@19 104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@19 105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@19 106 }
Chris@19 107 #else /* HAVE_FMA */
Chris@19 108
Chris@19 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */
Chris@19 110
Chris@19 111 /*
Chris@19 112 * This function contains 29 FP additions, 14 FP multiplications,
Chris@19 113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
Chris@19 114 * 41 stack variables, 2 constants, and 12 memory accesses
Chris@19 115 */
Chris@19 116 #include "hc2cbv.h"
Chris@19 117
Chris@19 118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 119 {
Chris@19 120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 122 {
Chris@19 123 INT m;
Chris@19 124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
Chris@19 126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
Chris@19 127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
Chris@19 128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@19 129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@19 130 T4 = VCONJ(T3);
Chris@19 131 T5 = VSUB(T2, T4);
Chris@19 132 Th = VADD(T2, T4);
Chris@19 133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@19 134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@19 135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@19 136 T8 = VCONJ(T7);
Chris@19 137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@19 138 Tb = VCONJ(Ta);
Chris@19 139 T9 = VSUB(T6, T8);
Chris@19 140 Td = VSUB(Tb, Tc);
Chris@19 141 Te = VADD(T9, Td);
Chris@19 142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
Chris@19 143 Ti = VADD(T6, T8);
Chris@19 144 Tj = VADD(Tb, Tc);
Chris@19 145 Tk = VADD(Ti, Tj);
Chris@19 146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
Chris@19 147 TA = VADD(Th, Tk);
Chris@19 148 T1 = LDW(&(W[TWVL * 4]));
Chris@19 149 Tf = VZMULI(T1, VADD(T5, Te));
Chris@19 150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
Chris@19 151 Tg = LDW(&(W[TWVL * 2]));
Chris@19 152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
Chris@19 153 Tu = LDW(&(W[TWVL * 6]));
Chris@19 154 Tv = VZMUL(Tu, VADD(Tm, Tl));
Chris@19 155 Tr = VFNMS(LDK(KP500000000), Te, T5);
Chris@19 156 Tq = LDW(&(W[TWVL * 8]));
Chris@19 157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
Chris@19 158 Ty = LDW(&(W[0]));
Chris@19 159 Tz = VZMULI(Ty, VADD(Ts, Tr));
Chris@19 160 To = VADD(Tf, Tn);
Chris@19 161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
Chris@19 162 Tp = VCONJ(VSUB(Tn, Tf));
Chris@19 163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
Chris@19 164 TC = VCONJ(VSUB(TA, Tz));
Chris@19 165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
Chris@19 166 TB = VADD(Tz, TA);
Chris@19 167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
Chris@19 168 Tx = VCONJ(VSUB(Tv, Tt));
Chris@19 169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
Chris@19 170 Tw = VADD(Tt, Tv);
Chris@19 171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
Chris@19 172 }
Chris@19 173 }
Chris@19 174 VLEAVE();
Chris@19 175 }
Chris@19 176
Chris@19 177 static const tw_instr twinstr[] = {
Chris@19 178 VTW(1, 1),
Chris@19 179 VTW(1, 2),
Chris@19 180 VTW(1, 3),
Chris@19 181 VTW(1, 4),
Chris@19 182 VTW(1, 5),
Chris@19 183 {TW_NEXT, VL, 0}
Chris@19 184 };
Chris@19 185
Chris@19 186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
Chris@19 187
Chris@19 188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@19 189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@19 190 }
Chris@19 191 #endif /* HAVE_FMA */