annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cf_15.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:49:07 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include r2cf.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 64 FP additions, 35 FP multiplications,
Chris@19 32 * (or, 36 additions, 7 multiplications, 28 fused multiply/add),
Chris@19 33 * 50 stack variables, 8 constants, and 30 memory accesses
Chris@19 34 */
Chris@19 35 #include "r2cf.h"
Chris@19 36
Chris@19 37 static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DK(KP910592997, +0.910592997310029334643087372129977886038870291);
Chris@19 40 DK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@19 41 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 42 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 43 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 44 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 45 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 46 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 47 {
Chris@19 48 INT i;
Chris@19 49 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
Chris@19 50 E Tw, Tz, Tp, Ty;
Chris@19 51 {
Chris@19 52 E Ti, TF, TR, TN, TX, T11, TM, TS, Tl, TH, Tf, To, TT, TD, Tg;
Chris@19 53 E Th;
Chris@19 54 TD = R0[0];
Chris@19 55 Tg = R0[WS(rs, 5)];
Chris@19 56 Th = R1[WS(rs, 2)];
Chris@19 57 {
Chris@19 58 E Tj, Tq, Tt, Tm, T3, Tk, T4, Ta, Tr, Td, Tu, T5, TE;
Chris@19 59 Tj = R1[WS(rs, 1)];
Chris@19 60 Tq = R0[WS(rs, 3)];
Chris@19 61 Tt = R1[WS(rs, 4)];
Chris@19 62 TE = Th + Tg;
Chris@19 63 Ti = Tg - Th;
Chris@19 64 Tm = R0[WS(rs, 6)];
Chris@19 65 {
Chris@19 66 E T8, T9, T1, T2, Tb, Tc;
Chris@19 67 T1 = R0[WS(rs, 4)];
Chris@19 68 T2 = R1[WS(rs, 6)];
Chris@19 69 TF = FNMS(KP500000000, TE, TD);
Chris@19 70 TR = TD + TE;
Chris@19 71 T8 = R1[WS(rs, 5)];
Chris@19 72 T3 = T1 - T2;
Chris@19 73 Tk = T1 + T2;
Chris@19 74 T9 = R1[0];
Chris@19 75 Tb = R0[WS(rs, 7)];
Chris@19 76 Tc = R0[WS(rs, 2)];
Chris@19 77 T4 = R0[WS(rs, 1)];
Chris@19 78 Ta = T8 - T9;
Chris@19 79 Tr = T8 + T9;
Chris@19 80 Td = Tb - Tc;
Chris@19 81 Tu = Tb + Tc;
Chris@19 82 T5 = R1[WS(rs, 3)];
Chris@19 83 }
Chris@19 84 {
Chris@19 85 E Ts, Tv, Te, Tn, T7, T6, TV, TW;
Chris@19 86 TV = Tq + Tr;
Chris@19 87 Ts = FNMS(KP500000000, Tr, Tq);
Chris@19 88 Tv = FNMS(KP500000000, Tu, Tt);
Chris@19 89 TW = Tt + Tu;
Chris@19 90 Te = Ta + Td;
Chris@19 91 TN = Td - Ta;
Chris@19 92 Tn = T4 + T5;
Chris@19 93 T6 = T4 - T5;
Chris@19 94 TX = TV + TW;
Chris@19 95 T11 = TW - TV;
Chris@19 96 TM = T6 - T3;
Chris@19 97 T7 = T3 + T6;
Chris@19 98 TS = Tj + Tk;
Chris@19 99 Tl = FNMS(KP500000000, Tk, Tj);
Chris@19 100 TH = Ts + Tv;
Chris@19 101 Tw = Ts - Tv;
Chris@19 102 Tz = Te - T7;
Chris@19 103 Tf = T7 + Te;
Chris@19 104 To = FNMS(KP500000000, Tn, Tm);
Chris@19 105 TT = Tm + Tn;
Chris@19 106 }
Chris@19 107 }
Chris@19 108 {
Chris@19 109 E TO, TQ, TU, T12, TK, TI, TG;
Chris@19 110 Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
Chris@19 111 TG = Tl + To;
Chris@19 112 Tp = Tl - To;
Chris@19 113 TO = FMA(KP618033988, TN, TM);
Chris@19 114 TQ = FNMS(KP618033988, TM, TN);
Chris@19 115 TU = TS + TT;
Chris@19 116 T12 = TS - TT;
Chris@19 117 TK = TG - TH;
Chris@19 118 TI = TG + TH;
Chris@19 119 {
Chris@19 120 E T10, TY, TL, TP, TJ, TZ;
Chris@19 121 T10 = TU - TX;
Chris@19 122 TY = TU + TX;
Chris@19 123 Cr[WS(csr, 5)] = TF + TI;
Chris@19 124 TJ = FNMS(KP250000000, TI, TF);
Chris@19 125 Ci[WS(csi, 6)] = -(KP951056516 * (FNMS(KP618033988, T11, T12)));
Chris@19 126 Ci[WS(csi, 3)] = KP951056516 * (FMA(KP618033988, T12, T11));
Chris@19 127 TL = FMA(KP559016994, TK, TJ);
Chris@19 128 TP = FNMS(KP559016994, TK, TJ);
Chris@19 129 Cr[0] = TR + TY;
Chris@19 130 TZ = FNMS(KP250000000, TY, TR);
Chris@19 131 Cr[WS(csr, 4)] = FNMS(KP823639103, TO, TL);
Chris@19 132 Cr[WS(csr, 1)] = FMA(KP823639103, TO, TL);
Chris@19 133 Cr[WS(csr, 7)] = FNMS(KP823639103, TQ, TP);
Chris@19 134 Cr[WS(csr, 2)] = FMA(KP823639103, TQ, TP);
Chris@19 135 Cr[WS(csr, 6)] = FMA(KP559016994, T10, TZ);
Chris@19 136 Cr[WS(csr, 3)] = FNMS(KP559016994, T10, TZ);
Chris@19 137 Ty = FMA(KP250000000, Tf, Ti);
Chris@19 138 }
Chris@19 139 }
Chris@19 140 }
Chris@19 141 {
Chris@19 142 E TB, Tx, TC, TA;
Chris@19 143 TB = FNMS(KP618033988, Tp, Tw);
Chris@19 144 Tx = FMA(KP618033988, Tw, Tp);
Chris@19 145 TC = FNMS(KP559016994, Tz, Ty);
Chris@19 146 TA = FMA(KP559016994, Tz, Ty);
Chris@19 147 Ci[WS(csi, 2)] = KP951056516 * (FNMS(KP910592997, TC, TB));
Chris@19 148 Ci[WS(csi, 7)] = KP951056516 * (FMA(KP910592997, TC, TB));
Chris@19 149 Ci[WS(csi, 4)] = KP951056516 * (FMA(KP910592997, TA, Tx));
Chris@19 150 Ci[WS(csi, 1)] = -(KP951056516 * (FNMS(KP910592997, TA, Tx)));
Chris@19 151 }
Chris@19 152 }
Chris@19 153 }
Chris@19 154 }
Chris@19 155
Chris@19 156 static const kr2c_desc desc = { 15, "r2cf_15", {36, 7, 28, 0}, &GENUS };
Chris@19 157
Chris@19 158 void X(codelet_r2cf_15) (planner *p) {
Chris@19 159 X(kr2c_register) (p, r2cf_15, &desc);
Chris@19 160 }
Chris@19 161
Chris@19 162 #else /* HAVE_FMA */
Chris@19 163
Chris@19 164 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cf_15 -include r2cf.h */
Chris@19 165
Chris@19 166 /*
Chris@19 167 * This function contains 64 FP additions, 25 FP multiplications,
Chris@19 168 * (or, 50 additions, 11 multiplications, 14 fused multiply/add),
Chris@19 169 * 47 stack variables, 10 constants, and 30 memory accesses
Chris@19 170 */
Chris@19 171 #include "r2cf.h"
Chris@19 172
Chris@19 173 static void r2cf_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 174 {
Chris@19 175 DK(KP484122918, +0.484122918275927110647408174972799951354115213);
Chris@19 176 DK(KP216506350, +0.216506350946109661690930792688234045867850657);
Chris@19 177 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 178 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 179 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 180 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 181 DK(KP509036960, +0.509036960455127183450980863393907648510733164);
Chris@19 182 DK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@19 183 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 184 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 185 {
Chris@19 186 INT i;
Chris@19 187 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
Chris@19 188 E Ti, TR, TL, TD, TE, T7, Te, Tf, TV, TW, TX, Tv, Ty, TH, To;
Chris@19 189 E Tr, TG, TS, TT, TU;
Chris@19 190 {
Chris@19 191 E TJ, Tg, Th, TK;
Chris@19 192 TJ = R0[0];
Chris@19 193 Tg = R0[WS(rs, 5)];
Chris@19 194 Th = R1[WS(rs, 2)];
Chris@19 195 TK = Th + Tg;
Chris@19 196 Ti = Tg - Th;
Chris@19 197 TR = TJ + TK;
Chris@19 198 TL = FNMS(KP500000000, TK, TJ);
Chris@19 199 }
Chris@19 200 {
Chris@19 201 E Tm, Tt, Tw, Tp, T3, Tx, Ta, Tn, Td, Tq, T6, Tu;
Chris@19 202 Tm = R1[WS(rs, 1)];
Chris@19 203 Tt = R0[WS(rs, 3)];
Chris@19 204 Tw = R1[WS(rs, 4)];
Chris@19 205 Tp = R0[WS(rs, 6)];
Chris@19 206 {
Chris@19 207 E T1, T2, T8, T9;
Chris@19 208 T1 = R0[WS(rs, 7)];
Chris@19 209 T2 = R0[WS(rs, 2)];
Chris@19 210 T3 = T1 - T2;
Chris@19 211 Tx = T1 + T2;
Chris@19 212 T8 = R1[WS(rs, 6)];
Chris@19 213 T9 = R0[WS(rs, 4)];
Chris@19 214 Ta = T8 - T9;
Chris@19 215 Tn = T9 + T8;
Chris@19 216 }
Chris@19 217 {
Chris@19 218 E Tb, Tc, T4, T5;
Chris@19 219 Tb = R1[WS(rs, 3)];
Chris@19 220 Tc = R0[WS(rs, 1)];
Chris@19 221 Td = Tb - Tc;
Chris@19 222 Tq = Tc + Tb;
Chris@19 223 T4 = R1[0];
Chris@19 224 T5 = R1[WS(rs, 5)];
Chris@19 225 T6 = T4 - T5;
Chris@19 226 Tu = T5 + T4;
Chris@19 227 }
Chris@19 228 TD = Ta - Td;
Chris@19 229 TE = T6 + T3;
Chris@19 230 T7 = T3 - T6;
Chris@19 231 Te = Ta + Td;
Chris@19 232 Tf = T7 - Te;
Chris@19 233 TV = Tt + Tu;
Chris@19 234 TW = Tw + Tx;
Chris@19 235 TX = TV + TW;
Chris@19 236 Tv = FNMS(KP500000000, Tu, Tt);
Chris@19 237 Ty = FNMS(KP500000000, Tx, Tw);
Chris@19 238 TH = Tv + Ty;
Chris@19 239 To = FNMS(KP500000000, Tn, Tm);
Chris@19 240 Tr = FNMS(KP500000000, Tq, Tp);
Chris@19 241 TG = To + Tr;
Chris@19 242 TS = Tm + Tn;
Chris@19 243 TT = Tp + Tq;
Chris@19 244 TU = TS + TT;
Chris@19 245 }
Chris@19 246 Ci[WS(csi, 5)] = KP866025403 * (Tf - Ti);
Chris@19 247 {
Chris@19 248 E TF, TP, TI, TM, TN, TQ, TO;
Chris@19 249 TF = FMA(KP823639103, TD, KP509036960 * TE);
Chris@19 250 TP = FNMS(KP509036960, TD, KP823639103 * TE);
Chris@19 251 TI = KP559016994 * (TG - TH);
Chris@19 252 TM = TG + TH;
Chris@19 253 TN = FNMS(KP250000000, TM, TL);
Chris@19 254 Cr[WS(csr, 5)] = TL + TM;
Chris@19 255 TQ = TN - TI;
Chris@19 256 Cr[WS(csr, 2)] = TP + TQ;
Chris@19 257 Cr[WS(csr, 7)] = TQ - TP;
Chris@19 258 TO = TI + TN;
Chris@19 259 Cr[WS(csr, 1)] = TF + TO;
Chris@19 260 Cr[WS(csr, 4)] = TO - TF;
Chris@19 261 }
Chris@19 262 {
Chris@19 263 E T11, T12, T10, TY, TZ;
Chris@19 264 T11 = TS - TT;
Chris@19 265 T12 = TW - TV;
Chris@19 266 Ci[WS(csi, 3)] = FMA(KP587785252, T11, KP951056516 * T12);
Chris@19 267 Ci[WS(csi, 6)] = FNMS(KP951056516, T11, KP587785252 * T12);
Chris@19 268 T10 = KP559016994 * (TU - TX);
Chris@19 269 TY = TU + TX;
Chris@19 270 TZ = FNMS(KP250000000, TY, TR);
Chris@19 271 Cr[WS(csr, 3)] = TZ - T10;
Chris@19 272 Cr[0] = TR + TY;
Chris@19 273 Cr[WS(csr, 6)] = T10 + TZ;
Chris@19 274 {
Chris@19 275 E Tl, TB, TA, TC;
Chris@19 276 {
Chris@19 277 E Tj, Tk, Ts, Tz;
Chris@19 278 Tj = FMA(KP866025403, Ti, KP216506350 * Tf);
Chris@19 279 Tk = KP484122918 * (Te + T7);
Chris@19 280 Tl = Tj + Tk;
Chris@19 281 TB = Tk - Tj;
Chris@19 282 Ts = To - Tr;
Chris@19 283 Tz = Tv - Ty;
Chris@19 284 TA = FMA(KP951056516, Ts, KP587785252 * Tz);
Chris@19 285 TC = FNMS(KP587785252, Ts, KP951056516 * Tz);
Chris@19 286 }
Chris@19 287 Ci[WS(csi, 1)] = Tl - TA;
Chris@19 288 Ci[WS(csi, 7)] = TC - TB;
Chris@19 289 Ci[WS(csi, 4)] = Tl + TA;
Chris@19 290 Ci[WS(csi, 2)] = TB + TC;
Chris@19 291 }
Chris@19 292 }
Chris@19 293 }
Chris@19 294 }
Chris@19 295 }
Chris@19 296
Chris@19 297 static const kr2c_desc desc = { 15, "r2cf_15", {50, 11, 14, 0}, &GENUS };
Chris@19 298
Chris@19 299 void X(codelet_r2cf_15) (planner *p) {
Chris@19 300 X(kr2c_register) (p, r2cf_15, &desc);
Chris@19 301 }
Chris@19 302
Chris@19 303 #endif /* HAVE_FMA */