annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/r2cfII_10.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:49:18 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include r2cfII.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 32 FP additions, 18 FP multiplications,
Chris@19 32 * (or, 14 additions, 0 multiplications, 18 fused multiply/add),
Chris@19 33 * 37 stack variables, 4 constants, and 20 memory accesses
Chris@19 34 */
Chris@19 35 #include "r2cfII.h"
Chris@19 36
Chris@19 37 static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 43 {
Chris@19 44 INT i;
Chris@19 45 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 46 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
Chris@19 47 {
Chris@19 48 E T1, To, Ts, Tt, T8, Ta, Te, Tm, Tl, Th, Tn, T9;
Chris@19 49 T1 = R0[0];
Chris@19 50 To = R1[WS(rs, 2)];
Chris@19 51 {
Chris@19 52 E T2, T3, T5, T6;
Chris@19 53 T2 = R0[WS(rs, 2)];
Chris@19 54 T3 = R0[WS(rs, 3)];
Chris@19 55 T5 = R0[WS(rs, 4)];
Chris@19 56 T6 = R0[WS(rs, 1)];
Chris@19 57 {
Chris@19 58 E Tc, T4, T7, Td, Tf, Tg;
Chris@19 59 Tc = R1[0];
Chris@19 60 Ts = T2 + T3;
Chris@19 61 T4 = T2 - T3;
Chris@19 62 Tt = T5 + T6;
Chris@19 63 T7 = T5 - T6;
Chris@19 64 Td = R1[WS(rs, 4)];
Chris@19 65 Tf = R1[WS(rs, 1)];
Chris@19 66 Tg = R1[WS(rs, 3)];
Chris@19 67 T8 = T4 + T7;
Chris@19 68 Ta = T4 - T7;
Chris@19 69 Te = Tc - Td;
Chris@19 70 Tm = Tc + Td;
Chris@19 71 Tl = Tf + Tg;
Chris@19 72 Th = Tf - Tg;
Chris@19 73 }
Chris@19 74 }
Chris@19 75 Cr[WS(csr, 2)] = T1 + T8;
Chris@19 76 Tn = Tl - Tm;
Chris@19 77 Tq = Tm + Tl;
Chris@19 78 Ti = FMA(KP618033988, Th, Te);
Chris@19 79 Tk = FNMS(KP618033988, Te, Th);
Chris@19 80 Ci[WS(csi, 2)] = Tn - To;
Chris@19 81 T9 = FNMS(KP250000000, T8, T1);
Chris@19 82 Tu = FMA(KP618033988, Tt, Ts);
Chris@19 83 Tw = FNMS(KP618033988, Ts, Tt);
Chris@19 84 Tp = FMA(KP250000000, Tn, To);
Chris@19 85 Tb = FMA(KP559016994, Ta, T9);
Chris@19 86 Tj = FNMS(KP559016994, Ta, T9);
Chris@19 87 }
Chris@19 88 Tr = FMA(KP559016994, Tq, Tp);
Chris@19 89 Tv = FNMS(KP559016994, Tq, Tp);
Chris@19 90 Cr[WS(csr, 1)] = FNMS(KP951056516, Tk, Tj);
Chris@19 91 Cr[WS(csr, 3)] = FMA(KP951056516, Tk, Tj);
Chris@19 92 Cr[0] = FMA(KP951056516, Ti, Tb);
Chris@19 93 Cr[WS(csr, 4)] = FNMS(KP951056516, Ti, Tb);
Chris@19 94 Ci[WS(csi, 1)] = FNMS(KP951056516, Tw, Tv);
Chris@19 95 Ci[WS(csi, 3)] = FMA(KP951056516, Tw, Tv);
Chris@19 96 Ci[WS(csi, 4)] = FMS(KP951056516, Tu, Tr);
Chris@19 97 Ci[0] = -(FMA(KP951056516, Tu, Tr));
Chris@19 98 }
Chris@19 99 }
Chris@19 100 }
Chris@19 101
Chris@19 102 static const kr2c_desc desc = { 10, "r2cfII_10", {14, 0, 18, 0}, &GENUS };
Chris@19 103
Chris@19 104 void X(codelet_r2cfII_10) (planner *p) {
Chris@19 105 X(kr2c_register) (p, r2cfII_10, &desc);
Chris@19 106 }
Chris@19 107
Chris@19 108 #else /* HAVE_FMA */
Chris@19 109
Chris@19 110 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 10 -name r2cfII_10 -dft-II -include r2cfII.h */
Chris@19 111
Chris@19 112 /*
Chris@19 113 * This function contains 32 FP additions, 12 FP multiplications,
Chris@19 114 * (or, 26 additions, 6 multiplications, 6 fused multiply/add),
Chris@19 115 * 21 stack variables, 4 constants, and 20 memory accesses
Chris@19 116 */
Chris@19 117 #include "r2cfII.h"
Chris@19 118
Chris@19 119 static void r2cfII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 120 {
Chris@19 121 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 122 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 123 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 124 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 125 {
Chris@19 126 INT i;
Chris@19 127 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 128 E T1, To, T8, Tq, T9, Tp, Te, Ts, Th, Tn;
Chris@19 129 T1 = R0[0];
Chris@19 130 To = R1[WS(rs, 2)];
Chris@19 131 {
Chris@19 132 E T2, T3, T4, T5, T6, T7;
Chris@19 133 T2 = R0[WS(rs, 2)];
Chris@19 134 T3 = R0[WS(rs, 3)];
Chris@19 135 T4 = T2 - T3;
Chris@19 136 T5 = R0[WS(rs, 4)];
Chris@19 137 T6 = R0[WS(rs, 1)];
Chris@19 138 T7 = T5 - T6;
Chris@19 139 T8 = T4 + T7;
Chris@19 140 Tq = T5 + T6;
Chris@19 141 T9 = KP559016994 * (T4 - T7);
Chris@19 142 Tp = T2 + T3;
Chris@19 143 }
Chris@19 144 {
Chris@19 145 E Tc, Td, Tm, Tf, Tg, Tl;
Chris@19 146 Tc = R1[0];
Chris@19 147 Td = R1[WS(rs, 4)];
Chris@19 148 Tm = Tc + Td;
Chris@19 149 Tf = R1[WS(rs, 1)];
Chris@19 150 Tg = R1[WS(rs, 3)];
Chris@19 151 Tl = Tf + Tg;
Chris@19 152 Te = Tc - Td;
Chris@19 153 Ts = KP559016994 * (Tm + Tl);
Chris@19 154 Th = Tf - Tg;
Chris@19 155 Tn = Tl - Tm;
Chris@19 156 }
Chris@19 157 Cr[WS(csr, 2)] = T1 + T8;
Chris@19 158 Ci[WS(csi, 2)] = Tn - To;
Chris@19 159 {
Chris@19 160 E Ti, Tk, Tb, Tj, Ta;
Chris@19 161 Ti = FMA(KP951056516, Te, KP587785252 * Th);
Chris@19 162 Tk = FNMS(KP587785252, Te, KP951056516 * Th);
Chris@19 163 Ta = FNMS(KP250000000, T8, T1);
Chris@19 164 Tb = T9 + Ta;
Chris@19 165 Tj = Ta - T9;
Chris@19 166 Cr[WS(csr, 4)] = Tb - Ti;
Chris@19 167 Cr[WS(csr, 3)] = Tj + Tk;
Chris@19 168 Cr[0] = Tb + Ti;
Chris@19 169 Cr[WS(csr, 1)] = Tj - Tk;
Chris@19 170 }
Chris@19 171 {
Chris@19 172 E Tr, Tw, Tu, Tv, Tt;
Chris@19 173 Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
Chris@19 174 Tw = FNMS(KP587785252, Tp, KP951056516 * Tq);
Chris@19 175 Tt = FMA(KP250000000, Tn, To);
Chris@19 176 Tu = Ts + Tt;
Chris@19 177 Tv = Tt - Ts;
Chris@19 178 Ci[0] = -(Tr + Tu);
Chris@19 179 Ci[WS(csi, 3)] = Tw + Tv;
Chris@19 180 Ci[WS(csi, 4)] = Tr - Tu;
Chris@19 181 Ci[WS(csi, 1)] = Tv - Tw;
Chris@19 182 }
Chris@19 183 }
Chris@19 184 }
Chris@19 185 }
Chris@19 186
Chris@19 187 static const kr2c_desc desc = { 10, "r2cfII_10", {26, 6, 6, 0}, &GENUS };
Chris@19 188
Chris@19 189 void X(codelet_r2cfII_10) (planner *p) {
Chris@19 190 X(kr2c_register) (p, r2cfII_10, &desc);
Chris@19 191 }
Chris@19 192
Chris@19 193 #endif /* HAVE_FMA */