annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hf_5.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:49:09 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@19 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@19 33 * 43 stack variables, 4 constants, and 20 memory accesses
Chris@19 34 */
Chris@19 35 #include "hf.h"
Chris@19 36
Chris@19 37 static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 43 {
Chris@19 44 INT m;
Chris@19 45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@19 46 E T1, TJ, TK, TA, TR, Te, TC, Tk, TE, Tq;
Chris@19 47 {
Chris@19 48 E Tg, Tj, Tm, TB, Th, Tp, Tl, Ti, To, TD, Tn;
Chris@19 49 T1 = cr[0];
Chris@19 50 TJ = ci[0];
Chris@19 51 {
Chris@19 52 E T9, Tc, Ty, Ta, Tb, Tx, T7, Tf, Tz, Td;
Chris@19 53 {
Chris@19 54 E T3, T6, T8, Tw, T4, T2, T5;
Chris@19 55 T3 = cr[WS(rs, 1)];
Chris@19 56 T6 = ci[WS(rs, 1)];
Chris@19 57 T2 = W[0];
Chris@19 58 T9 = cr[WS(rs, 4)];
Chris@19 59 Tc = ci[WS(rs, 4)];
Chris@19 60 T8 = W[6];
Chris@19 61 Tw = T2 * T6;
Chris@19 62 T4 = T2 * T3;
Chris@19 63 T5 = W[1];
Chris@19 64 Ty = T8 * Tc;
Chris@19 65 Ta = T8 * T9;
Chris@19 66 Tb = W[7];
Chris@19 67 Tx = FNMS(T5, T3, Tw);
Chris@19 68 T7 = FMA(T5, T6, T4);
Chris@19 69 }
Chris@19 70 Tg = cr[WS(rs, 2)];
Chris@19 71 Tz = FNMS(Tb, T9, Ty);
Chris@19 72 Td = FMA(Tb, Tc, Ta);
Chris@19 73 Tj = ci[WS(rs, 2)];
Chris@19 74 Tf = W[2];
Chris@19 75 TK = Tx + Tz;
Chris@19 76 TA = Tx - Tz;
Chris@19 77 TR = Td - T7;
Chris@19 78 Te = T7 + Td;
Chris@19 79 Tm = cr[WS(rs, 3)];
Chris@19 80 TB = Tf * Tj;
Chris@19 81 Th = Tf * Tg;
Chris@19 82 Tp = ci[WS(rs, 3)];
Chris@19 83 Tl = W[4];
Chris@19 84 Ti = W[3];
Chris@19 85 To = W[5];
Chris@19 86 }
Chris@19 87 TD = Tl * Tp;
Chris@19 88 Tn = Tl * Tm;
Chris@19 89 TC = FNMS(Ti, Tg, TB);
Chris@19 90 Tk = FMA(Ti, Tj, Th);
Chris@19 91 TE = FNMS(To, Tm, TD);
Chris@19 92 Tq = FMA(To, Tp, Tn);
Chris@19 93 }
Chris@19 94 {
Chris@19 95 E TG, TI, TO, TS, TU, Tu, TN, Tt, TL, TF;
Chris@19 96 TL = TC + TE;
Chris@19 97 TF = TC - TE;
Chris@19 98 {
Chris@19 99 E Tr, TQ, TM, Ts;
Chris@19 100 Tr = Tk + Tq;
Chris@19 101 TQ = Tk - Tq;
Chris@19 102 TG = FMA(KP618033988, TF, TA);
Chris@19 103 TI = FNMS(KP618033988, TA, TF);
Chris@19 104 TO = TK - TL;
Chris@19 105 TM = TK + TL;
Chris@19 106 TS = FMA(KP618033988, TR, TQ);
Chris@19 107 TU = FNMS(KP618033988, TQ, TR);
Chris@19 108 Tu = Te - Tr;
Chris@19 109 Ts = Te + Tr;
Chris@19 110 ci[WS(rs, 4)] = TM + TJ;
Chris@19 111 TN = FNMS(KP250000000, TM, TJ);
Chris@19 112 cr[0] = T1 + Ts;
Chris@19 113 Tt = FNMS(KP250000000, Ts, T1);
Chris@19 114 }
Chris@19 115 {
Chris@19 116 E TT, TP, Tv, TH;
Chris@19 117 TT = FMA(KP559016994, TO, TN);
Chris@19 118 TP = FNMS(KP559016994, TO, TN);
Chris@19 119 Tv = FMA(KP559016994, Tu, Tt);
Chris@19 120 TH = FNMS(KP559016994, Tu, Tt);
Chris@19 121 ci[WS(rs, 2)] = FMA(KP951056516, TS, TP);
Chris@19 122 cr[WS(rs, 3)] = FMS(KP951056516, TS, TP);
Chris@19 123 ci[WS(rs, 3)] = FMA(KP951056516, TU, TT);
Chris@19 124 cr[WS(rs, 4)] = FMS(KP951056516, TU, TT);
Chris@19 125 ci[WS(rs, 1)] = FMA(KP951056516, TI, TH);
Chris@19 126 cr[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
Chris@19 127 cr[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
Chris@19 128 ci[0] = FNMS(KP951056516, TG, Tv);
Chris@19 129 }
Chris@19 130 }
Chris@19 131 }
Chris@19 132 }
Chris@19 133 }
Chris@19 134
Chris@19 135 static const tw_instr twinstr[] = {
Chris@19 136 {TW_FULL, 1, 5},
Chris@19 137 {TW_NEXT, 1, 0}
Chris@19 138 };
Chris@19 139
Chris@19 140 static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {14, 8, 26, 0} };
Chris@19 141
Chris@19 142 void X(codelet_hf_5) (planner *p) {
Chris@19 143 X(khc2hc_register) (p, hf_5, &desc);
Chris@19 144 }
Chris@19 145 #else /* HAVE_FMA */
Chris@19 146
Chris@19 147 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
Chris@19 148
Chris@19 149 /*
Chris@19 150 * This function contains 40 FP additions, 28 FP multiplications,
Chris@19 151 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@19 152 * 29 stack variables, 4 constants, and 20 memory accesses
Chris@19 153 */
Chris@19 154 #include "hf.h"
Chris@19 155
Chris@19 156 static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 157 {
Chris@19 158 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 159 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 160 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 161 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 162 {
Chris@19 163 INT m;
Chris@19 164 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@19 165 E T1, TE, Tu, Tx, TC, TB, TF, TG, TH, Tc, Tn, To;
Chris@19 166 T1 = cr[0];
Chris@19 167 TE = ci[0];
Chris@19 168 {
Chris@19 169 E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
Chris@19 170 {
Chris@19 171 E T3, T5, T2, T4;
Chris@19 172 T3 = cr[WS(rs, 1)];
Chris@19 173 T5 = ci[WS(rs, 1)];
Chris@19 174 T2 = W[0];
Chris@19 175 T4 = W[1];
Chris@19 176 T6 = FMA(T2, T3, T4 * T5);
Chris@19 177 Ts = FNMS(T4, T3, T2 * T5);
Chris@19 178 }
Chris@19 179 {
Chris@19 180 E Tj, Tl, Ti, Tk;
Chris@19 181 Tj = cr[WS(rs, 3)];
Chris@19 182 Tl = ci[WS(rs, 3)];
Chris@19 183 Ti = W[4];
Chris@19 184 Tk = W[5];
Chris@19 185 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@19 186 Tw = FNMS(Tk, Tj, Ti * Tl);
Chris@19 187 }
Chris@19 188 {
Chris@19 189 E T8, Ta, T7, T9;
Chris@19 190 T8 = cr[WS(rs, 4)];
Chris@19 191 Ta = ci[WS(rs, 4)];
Chris@19 192 T7 = W[6];
Chris@19 193 T9 = W[7];
Chris@19 194 Tb = FMA(T7, T8, T9 * Ta);
Chris@19 195 Tt = FNMS(T9, T8, T7 * Ta);
Chris@19 196 }
Chris@19 197 {
Chris@19 198 E Te, Tg, Td, Tf;
Chris@19 199 Te = cr[WS(rs, 2)];
Chris@19 200 Tg = ci[WS(rs, 2)];
Chris@19 201 Td = W[2];
Chris@19 202 Tf = W[3];
Chris@19 203 Th = FMA(Td, Te, Tf * Tg);
Chris@19 204 Tv = FNMS(Tf, Te, Td * Tg);
Chris@19 205 }
Chris@19 206 Tu = Ts - Tt;
Chris@19 207 Tx = Tv - Tw;
Chris@19 208 TC = Th - Tm;
Chris@19 209 TB = Tb - T6;
Chris@19 210 TF = Ts + Tt;
Chris@19 211 TG = Tv + Tw;
Chris@19 212 TH = TF + TG;
Chris@19 213 Tc = T6 + Tb;
Chris@19 214 Tn = Th + Tm;
Chris@19 215 To = Tc + Tn;
Chris@19 216 }
Chris@19 217 cr[0] = T1 + To;
Chris@19 218 {
Chris@19 219 E Ty, TA, Tr, Tz, Tp, Tq;
Chris@19 220 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
Chris@19 221 TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
Chris@19 222 Tp = KP559016994 * (Tc - Tn);
Chris@19 223 Tq = FNMS(KP250000000, To, T1);
Chris@19 224 Tr = Tp + Tq;
Chris@19 225 Tz = Tq - Tp;
Chris@19 226 ci[0] = Tr - Ty;
Chris@19 227 ci[WS(rs, 1)] = Tz + TA;
Chris@19 228 cr[WS(rs, 1)] = Tr + Ty;
Chris@19 229 cr[WS(rs, 2)] = Tz - TA;
Chris@19 230 }
Chris@19 231 ci[WS(rs, 4)] = TH + TE;
Chris@19 232 {
Chris@19 233 E TD, TL, TK, TM, TI, TJ;
Chris@19 234 TD = FMA(KP587785252, TB, KP951056516 * TC);
Chris@19 235 TL = FNMS(KP587785252, TC, KP951056516 * TB);
Chris@19 236 TI = FNMS(KP250000000, TH, TE);
Chris@19 237 TJ = KP559016994 * (TF - TG);
Chris@19 238 TK = TI - TJ;
Chris@19 239 TM = TJ + TI;
Chris@19 240 cr[WS(rs, 3)] = TD - TK;
Chris@19 241 ci[WS(rs, 3)] = TL + TM;
Chris@19 242 ci[WS(rs, 2)] = TD + TK;
Chris@19 243 cr[WS(rs, 4)] = TL - TM;
Chris@19 244 }
Chris@19 245 }
Chris@19 246 }
Chris@19 247 }
Chris@19 248
Chris@19 249 static const tw_instr twinstr[] = {
Chris@19 250 {TW_FULL, 1, 5},
Chris@19 251 {TW_NEXT, 1, 0}
Chris@19 252 };
Chris@19 253
Chris@19 254 static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {26, 14, 14, 0} };
Chris@19 255
Chris@19 256 void X(codelet_hf_5) (planner *p) {
Chris@19 257 X(khc2hc_register) (p, hf_5, &desc);
Chris@19 258 }
Chris@19 259 #endif /* HAVE_FMA */