annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hc2cfdft_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:49:27 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include hc2cf.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 58 FP additions, 44 FP multiplications,
Chris@19 32 * (or, 36 additions, 22 multiplications, 22 fused multiply/add),
Chris@19 33 * 42 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cf.h"
Chris@19 36
Chris@19 37 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 44 E TP, TT, TN, TM, TY, T13;
Chris@19 45 {
Chris@19 46 E T3, TQ, TJ, T12, Tu, TB, TX, T10, Tj, Tf, Ti, Td, Th, TU, TS;
Chris@19 47 {
Chris@19 48 E TC, TI, TF, TH, TA, Tw, TZ;
Chris@19 49 {
Chris@19 50 E T1, T2, TD, TE;
Chris@19 51 T1 = Ip[0];
Chris@19 52 T2 = Im[0];
Chris@19 53 TD = Rm[0];
Chris@19 54 TE = Rp[0];
Chris@19 55 TC = W[0];
Chris@19 56 T3 = T1 - T2;
Chris@19 57 TI = T1 + T2;
Chris@19 58 TQ = TE + TD;
Chris@19 59 TF = TD - TE;
Chris@19 60 TH = W[1];
Chris@19 61 }
Chris@19 62 {
Chris@19 63 E Tr, To, Ts, Tl, Tq;
Chris@19 64 {
Chris@19 65 E Tm, Tn, TG, T11;
Chris@19 66 Tm = Rm[WS(rs, 2)];
Chris@19 67 Tn = Rp[WS(rs, 2)];
Chris@19 68 TG = TC * TF;
Chris@19 69 T11 = TH * TF;
Chris@19 70 Tr = Ip[WS(rs, 2)];
Chris@19 71 TA = Tn + Tm;
Chris@19 72 To = Tm - Tn;
Chris@19 73 TJ = FNMS(TH, TI, TG);
Chris@19 74 T12 = FMA(TC, TI, T11);
Chris@19 75 Ts = Im[WS(rs, 2)];
Chris@19 76 }
Chris@19 77 Tl = W[8];
Chris@19 78 Tq = W[9];
Chris@19 79 {
Chris@19 80 E Tz, Ty, TW, Tx, Tt, Tp;
Chris@19 81 Tw = W[6];
Chris@19 82 Tx = Tr - Ts;
Chris@19 83 Tt = Tr + Ts;
Chris@19 84 Tp = Tl * To;
Chris@19 85 Tz = W[7];
Chris@19 86 Ty = Tw * Tx;
Chris@19 87 TW = Tl * Tt;
Chris@19 88 Tu = FNMS(Tq, Tt, Tp);
Chris@19 89 TZ = Tz * Tx;
Chris@19 90 TB = FNMS(Tz, TA, Ty);
Chris@19 91 TX = FMA(Tq, To, TW);
Chris@19 92 }
Chris@19 93 }
Chris@19 94 {
Chris@19 95 E T5, T6, Ta, Tb;
Chris@19 96 T5 = Ip[WS(rs, 1)];
Chris@19 97 T10 = FMA(Tw, TA, TZ);
Chris@19 98 T6 = Im[WS(rs, 1)];
Chris@19 99 Ta = Rp[WS(rs, 1)];
Chris@19 100 Tb = Rm[WS(rs, 1)];
Chris@19 101 {
Chris@19 102 E T4, Tg, T7, Tc, T9, T8, TR;
Chris@19 103 T4 = W[5];
Chris@19 104 Tg = T5 - T6;
Chris@19 105 T7 = T5 + T6;
Chris@19 106 Tj = Ta + Tb;
Chris@19 107 Tc = Ta - Tb;
Chris@19 108 T9 = W[4];
Chris@19 109 T8 = T4 * T7;
Chris@19 110 Tf = W[2];
Chris@19 111 Ti = W[3];
Chris@19 112 TR = T9 * T7;
Chris@19 113 Td = FMA(T9, Tc, T8);
Chris@19 114 Th = Tf * Tg;
Chris@19 115 TU = Ti * Tg;
Chris@19 116 TS = FNMS(T4, Tc, TR);
Chris@19 117 }
Chris@19 118 }
Chris@19 119 }
Chris@19 120 {
Chris@19 121 E Te, T1d, TK, Tv, T1a, T1b, Tk, TV;
Chris@19 122 TP = Td + T3;
Chris@19 123 Te = T3 - Td;
Chris@19 124 Tk = FNMS(Ti, Tj, Th);
Chris@19 125 TV = FMA(Tf, Tj, TU);
Chris@19 126 T1d = TQ + TS;
Chris@19 127 TT = TQ - TS;
Chris@19 128 TN = TJ - TB;
Chris@19 129 TK = TB + TJ;
Chris@19 130 Tv = Tk + Tu;
Chris@19 131 TM = Tu - Tk;
Chris@19 132 TY = TV - TX;
Chris@19 133 T1a = TV + TX;
Chris@19 134 T1b = T10 + T12;
Chris@19 135 T13 = T10 - T12;
Chris@19 136 {
Chris@19 137 E T1g, TL, T1e, T1c, T19, T1f;
Chris@19 138 T1g = Tv - TK;
Chris@19 139 TL = Tv + TK;
Chris@19 140 T1e = T1a + T1b;
Chris@19 141 T1c = T1a - T1b;
Chris@19 142 T19 = FNMS(KP500000000, TL, Te);
Chris@19 143 Ip[0] = KP500000000 * (Te + TL);
Chris@19 144 T1f = FNMS(KP500000000, T1e, T1d);
Chris@19 145 Rp[0] = KP500000000 * (T1d + T1e);
Chris@19 146 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19)));
Chris@19 147 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19));
Chris@19 148 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f));
Chris@19 149 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f));
Chris@19 150 }
Chris@19 151 }
Chris@19 152 }
Chris@19 153 {
Chris@19 154 E TO, T16, T14, T18, T17, T15;
Chris@19 155 TO = TM + TN;
Chris@19 156 T16 = TN - TM;
Chris@19 157 T14 = TY + T13;
Chris@19 158 T18 = T13 - TY;
Chris@19 159 T17 = FMA(KP500000000, TO, TP);
Chris@19 160 Im[WS(rs, 2)] = KP500000000 * (TO - TP);
Chris@19 161 T15 = FNMS(KP500000000, T14, TT);
Chris@19 162 Rm[WS(rs, 2)] = KP500000000 * (TT + T14);
Chris@19 163 Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17)));
Chris@19 164 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17));
Chris@19 165 Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15));
Chris@19 166 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15));
Chris@19 167 }
Chris@19 168 }
Chris@19 169 }
Chris@19 170 }
Chris@19 171
Chris@19 172 static const tw_instr twinstr[] = {
Chris@19 173 {TW_FULL, 1, 6},
Chris@19 174 {TW_NEXT, 1, 0}
Chris@19 175 };
Chris@19 176
Chris@19 177 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {36, 22, 22, 0} };
Chris@19 178
Chris@19 179 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@19 180 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@19 181 }
Chris@19 182 #else /* HAVE_FMA */
Chris@19 183
Chris@19 184 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include hc2cf.h */
Chris@19 185
Chris@19 186 /*
Chris@19 187 * This function contains 58 FP additions, 36 FP multiplications,
Chris@19 188 * (or, 44 additions, 22 multiplications, 14 fused multiply/add),
Chris@19 189 * 40 stack variables, 3 constants, and 24 memory accesses
Chris@19 190 */
Chris@19 191 #include "hc2cf.h"
Chris@19 192
Chris@19 193 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 194 {
Chris@19 195 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 196 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 197 DK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@19 198 {
Chris@19 199 INT m;
Chris@19 200 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 201 E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU;
Chris@19 202 {
Chris@19 203 E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4;
Chris@19 204 E T8;
Chris@19 205 {
Chris@19 206 E T5, T6, T9, Ta;
Chris@19 207 T1 = Ip[0];
Chris@19 208 T2 = Im[0];
Chris@19 209 TD = T1 + T2;
Chris@19 210 Tz = Rm[0];
Chris@19 211 TA = Rp[0];
Chris@19 212 TB = Tz - TA;
Chris@19 213 T5 = Ip[WS(rs, 1)];
Chris@19 214 T6 = Im[WS(rs, 1)];
Chris@19 215 T7 = T5 + T6;
Chris@19 216 Tf = T5 - T6;
Chris@19 217 T9 = Rp[WS(rs, 1)];
Chris@19 218 Ta = Rm[WS(rs, 1)];
Chris@19 219 Tb = T9 - Ta;
Chris@19 220 Th = T9 + Ta;
Chris@19 221 {
Chris@19 222 E To, Tp, Tk, Tl;
Chris@19 223 To = Rp[WS(rs, 2)];
Chris@19 224 Tp = Rm[WS(rs, 2)];
Chris@19 225 Tq = To - Tp;
Chris@19 226 Tw = To + Tp;
Chris@19 227 Tk = Ip[WS(rs, 2)];
Chris@19 228 Tl = Im[WS(rs, 2)];
Chris@19 229 Tm = Tk + Tl;
Chris@19 230 Tu = Tk - Tl;
Chris@19 231 }
Chris@19 232 }
Chris@19 233 T3 = T1 - T2;
Chris@19 234 TM = TA + Tz;
Chris@19 235 T4 = W[5];
Chris@19 236 T8 = W[4];
Chris@19 237 Tc = FMA(T4, T7, T8 * Tb);
Chris@19 238 TN = FNMS(T4, Tb, T8 * T7);
Chris@19 239 {
Chris@19 240 E Ti, TP, Tr, TQ;
Chris@19 241 {
Chris@19 242 E Te, Tg, Tj, Tn;
Chris@19 243 Te = W[2];
Chris@19 244 Tg = W[3];
Chris@19 245 Ti = FNMS(Tg, Th, Te * Tf);
Chris@19 246 TP = FMA(Tg, Tf, Te * Th);
Chris@19 247 Tj = W[9];
Chris@19 248 Tn = W[8];
Chris@19 249 Tr = FMA(Tj, Tm, Tn * Tq);
Chris@19 250 TQ = FNMS(Tj, Tq, Tn * Tm);
Chris@19 251 }
Chris@19 252 Ts = Ti - Tr;
Chris@19 253 T10 = TP + TQ;
Chris@19 254 TI = Ti + Tr;
Chris@19 255 TR = TP - TQ;
Chris@19 256 }
Chris@19 257 {
Chris@19 258 E Tx, TS, TE, TT;
Chris@19 259 {
Chris@19 260 E Tt, Tv, Ty, TC;
Chris@19 261 Tt = W[6];
Chris@19 262 Tv = W[7];
Chris@19 263 Tx = FNMS(Tv, Tw, Tt * Tu);
Chris@19 264 TS = FMA(Tv, Tu, Tt * Tw);
Chris@19 265 Ty = W[0];
Chris@19 266 TC = W[1];
Chris@19 267 TE = FNMS(TC, TD, Ty * TB);
Chris@19 268 TT = FMA(TC, TB, Ty * TD);
Chris@19 269 }
Chris@19 270 TF = Tx + TE;
Chris@19 271 T11 = TS + TT;
Chris@19 272 TH = TE - Tx;
Chris@19 273 TU = TS - TT;
Chris@19 274 }
Chris@19 275 }
Chris@19 276 {
Chris@19 277 E T12, Td, TG, TZ;
Chris@19 278 T12 = KP433012701 * (T10 - T11);
Chris@19 279 Td = T3 - Tc;
Chris@19 280 TG = Ts + TF;
Chris@19 281 TZ = FNMS(KP250000000, TG, KP500000000 * Td);
Chris@19 282 Ip[0] = KP500000000 * (Td + TG);
Chris@19 283 Im[WS(rs, 1)] = T12 - TZ;
Chris@19 284 Ip[WS(rs, 2)] = TZ + T12;
Chris@19 285 }
Chris@19 286 {
Chris@19 287 E T16, T13, T14, T15;
Chris@19 288 T16 = KP433012701 * (Ts - TF);
Chris@19 289 T13 = TM + TN;
Chris@19 290 T14 = T10 + T11;
Chris@19 291 T15 = FNMS(KP250000000, T14, KP500000000 * T13);
Chris@19 292 Rp[WS(rs, 2)] = T15 - T16;
Chris@19 293 Rp[0] = KP500000000 * (T13 + T14);
Chris@19 294 Rm[WS(rs, 1)] = T16 + T15;
Chris@19 295 }
Chris@19 296 {
Chris@19 297 E TY, TJ, TK, TX;
Chris@19 298 TY = KP433012701 * (TU - TR);
Chris@19 299 TJ = TH - TI;
Chris@19 300 TK = Tc + T3;
Chris@19 301 TX = FMA(KP500000000, TK, KP250000000 * TJ);
Chris@19 302 Im[WS(rs, 2)] = KP500000000 * (TJ - TK);
Chris@19 303 Im[0] = TY - TX;
Chris@19 304 Ip[WS(rs, 1)] = TX + TY;
Chris@19 305 }
Chris@19 306 {
Chris@19 307 E TL, TO, TV, TW;
Chris@19 308 TL = KP433012701 * (TI + TH);
Chris@19 309 TO = TM - TN;
Chris@19 310 TV = TR + TU;
Chris@19 311 TW = FNMS(KP250000000, TV, KP500000000 * TO);
Chris@19 312 Rp[WS(rs, 1)] = TL + TW;
Chris@19 313 Rm[WS(rs, 2)] = KP500000000 * (TO + TV);
Chris@19 314 Rm[0] = TW - TL;
Chris@19 315 }
Chris@19 316 }
Chris@19 317 }
Chris@19 318 }
Chris@19 319
Chris@19 320 static const tw_instr twinstr[] = {
Chris@19 321 {TW_FULL, 1, 6},
Chris@19 322 {TW_NEXT, 1, 0}
Chris@19 323 };
Chris@19 324
Chris@19 325 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {44, 22, 14, 0} };
Chris@19 326
Chris@19 327 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@19 328 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@19 329 }
Chris@19 330 #endif /* HAVE_FMA */