annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cf/hc2cfdft_4.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:49:27 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include hc2cf.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 30 FP additions, 20 FP multiplications,
Chris@19 32 * (or, 24 additions, 14 multiplications, 6 fused multiply/add),
Chris@19 33 * 32 stack variables, 1 constants, and 16 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cf.h"
Chris@19 36
Chris@19 37 static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 40 {
Chris@19 41 INT m;
Chris@19 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 43 E Td, Tu, Tr, T4, Tm, To, T9, T5, TA, Tp, Tv, TD, T6, Tq;
Chris@19 44 {
Chris@19 45 E Tk, Tl, Tf, TC, Tj, T7, T8, T1, Tn, Tb, Tc;
Chris@19 46 Tb = Ip[0];
Chris@19 47 Tc = Im[0];
Chris@19 48 {
Chris@19 49 E Ti, Tg, Th, T2, T3;
Chris@19 50 Tg = Rm[0];
Chris@19 51 Th = Rp[0];
Chris@19 52 Tk = W[1];
Chris@19 53 Tl = Tb + Tc;
Chris@19 54 Td = Tb - Tc;
Chris@19 55 Tu = Th + Tg;
Chris@19 56 Ti = Tg - Th;
Chris@19 57 Tf = W[0];
Chris@19 58 T2 = Ip[WS(rs, 1)];
Chris@19 59 T3 = Im[WS(rs, 1)];
Chris@19 60 TC = Tk * Ti;
Chris@19 61 Tj = Tf * Ti;
Chris@19 62 T7 = Rp[WS(rs, 1)];
Chris@19 63 Tr = T2 + T3;
Chris@19 64 T4 = T2 - T3;
Chris@19 65 T8 = Rm[WS(rs, 1)];
Chris@19 66 T1 = W[2];
Chris@19 67 Tn = W[4];
Chris@19 68 }
Chris@19 69 Tm = FNMS(Tk, Tl, Tj);
Chris@19 70 To = T7 - T8;
Chris@19 71 T9 = T7 + T8;
Chris@19 72 T5 = T1 * T4;
Chris@19 73 TA = Tn * Tr;
Chris@19 74 Tp = Tn * To;
Chris@19 75 Tv = T1 * T9;
Chris@19 76 TD = FMA(Tf, Tl, TC);
Chris@19 77 T6 = W[3];
Chris@19 78 Tq = W[5];
Chris@19 79 }
Chris@19 80 {
Chris@19 81 E Tw, Ta, TB, Ts;
Chris@19 82 Tw = FMA(T6, T4, Tv);
Chris@19 83 Ta = FNMS(T6, T9, T5);
Chris@19 84 TB = FNMS(Tq, To, TA);
Chris@19 85 Ts = FMA(Tq, Tr, Tp);
Chris@19 86 {
Chris@19 87 E TF, Tx, Te, Tz;
Chris@19 88 TF = Tu + Tw;
Chris@19 89 Tx = Tu - Tw;
Chris@19 90 Te = Ta + Td;
Chris@19 91 Tz = Td - Ta;
Chris@19 92 {
Chris@19 93 E TG, TE, Tt, Ty;
Chris@19 94 TG = TB + TD;
Chris@19 95 TE = TB - TD;
Chris@19 96 Tt = Tm - Ts;
Chris@19 97 Ty = Ts + Tm;
Chris@19 98 Im[0] = KP500000000 * (TE - Tz);
Chris@19 99 Ip[WS(rs, 1)] = KP500000000 * (Tz + TE);
Chris@19 100 Rp[0] = KP500000000 * (TF + TG);
Chris@19 101 Rm[WS(rs, 1)] = KP500000000 * (TF - TG);
Chris@19 102 Rp[WS(rs, 1)] = KP500000000 * (Tx + Ty);
Chris@19 103 Rm[0] = KP500000000 * (Tx - Ty);
Chris@19 104 Im[WS(rs, 1)] = KP500000000 * (Tt - Te);
Chris@19 105 Ip[0] = KP500000000 * (Te + Tt);
Chris@19 106 }
Chris@19 107 }
Chris@19 108 }
Chris@19 109 }
Chris@19 110 }
Chris@19 111 }
Chris@19 112
Chris@19 113 static const tw_instr twinstr[] = {
Chris@19 114 {TW_FULL, 1, 4},
Chris@19 115 {TW_NEXT, 1, 0}
Chris@19 116 };
Chris@19 117
Chris@19 118 static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} };
Chris@19 119
Chris@19 120 void X(codelet_hc2cfdft_4) (planner *p) {
Chris@19 121 X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
Chris@19 122 }
Chris@19 123 #else /* HAVE_FMA */
Chris@19 124
Chris@19 125 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 4 -dit -name hc2cfdft_4 -include hc2cf.h */
Chris@19 126
Chris@19 127 /*
Chris@19 128 * This function contains 30 FP additions, 20 FP multiplications,
Chris@19 129 * (or, 24 additions, 14 multiplications, 6 fused multiply/add),
Chris@19 130 * 18 stack variables, 1 constants, and 16 memory accesses
Chris@19 131 */
Chris@19 132 #include "hc2cf.h"
Chris@19 133
Chris@19 134 static void hc2cfdft_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 135 {
Chris@19 136 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 137 {
Chris@19 138 INT m;
Chris@19 139 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 140 E Tc, Tr, Tk, Tx, T9, Ts, Tp, Tw;
Chris@19 141 {
Chris@19 142 E Ta, Tb, Tj, Tf, Tg, Th, Te, Ti;
Chris@19 143 Ta = Ip[0];
Chris@19 144 Tb = Im[0];
Chris@19 145 Tj = Ta + Tb;
Chris@19 146 Tf = Rm[0];
Chris@19 147 Tg = Rp[0];
Chris@19 148 Th = Tf - Tg;
Chris@19 149 Tc = Ta - Tb;
Chris@19 150 Tr = Tg + Tf;
Chris@19 151 Te = W[0];
Chris@19 152 Ti = W[1];
Chris@19 153 Tk = FNMS(Ti, Tj, Te * Th);
Chris@19 154 Tx = FMA(Ti, Th, Te * Tj);
Chris@19 155 }
Chris@19 156 {
Chris@19 157 E T4, To, T8, Tm;
Chris@19 158 {
Chris@19 159 E T2, T3, T6, T7;
Chris@19 160 T2 = Ip[WS(rs, 1)];
Chris@19 161 T3 = Im[WS(rs, 1)];
Chris@19 162 T4 = T2 - T3;
Chris@19 163 To = T2 + T3;
Chris@19 164 T6 = Rp[WS(rs, 1)];
Chris@19 165 T7 = Rm[WS(rs, 1)];
Chris@19 166 T8 = T6 + T7;
Chris@19 167 Tm = T6 - T7;
Chris@19 168 }
Chris@19 169 {
Chris@19 170 E T1, T5, Tl, Tn;
Chris@19 171 T1 = W[2];
Chris@19 172 T5 = W[3];
Chris@19 173 T9 = FNMS(T5, T8, T1 * T4);
Chris@19 174 Ts = FMA(T1, T8, T5 * T4);
Chris@19 175 Tl = W[4];
Chris@19 176 Tn = W[5];
Chris@19 177 Tp = FMA(Tl, Tm, Tn * To);
Chris@19 178 Tw = FNMS(Tn, Tm, Tl * To);
Chris@19 179 }
Chris@19 180 }
Chris@19 181 {
Chris@19 182 E Td, Tq, Tz, TA;
Chris@19 183 Td = T9 + Tc;
Chris@19 184 Tq = Tk - Tp;
Chris@19 185 Ip[0] = KP500000000 * (Td + Tq);
Chris@19 186 Im[WS(rs, 1)] = KP500000000 * (Tq - Td);
Chris@19 187 Tz = Tr + Ts;
Chris@19 188 TA = Tw + Tx;
Chris@19 189 Rm[WS(rs, 1)] = KP500000000 * (Tz - TA);
Chris@19 190 Rp[0] = KP500000000 * (Tz + TA);
Chris@19 191 }
Chris@19 192 {
Chris@19 193 E Tt, Tu, Tv, Ty;
Chris@19 194 Tt = Tr - Ts;
Chris@19 195 Tu = Tp + Tk;
Chris@19 196 Rm[0] = KP500000000 * (Tt - Tu);
Chris@19 197 Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu);
Chris@19 198 Tv = Tc - T9;
Chris@19 199 Ty = Tw - Tx;
Chris@19 200 Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty);
Chris@19 201 Im[0] = KP500000000 * (Ty - Tv);
Chris@19 202 }
Chris@19 203 }
Chris@19 204 }
Chris@19 205 }
Chris@19 206
Chris@19 207 static const tw_instr twinstr[] = {
Chris@19 208 {TW_FULL, 1, 4},
Chris@19 209 {TW_NEXT, 1, 0}
Chris@19 210 };
Chris@19 211
Chris@19 212 static const hc2c_desc desc = { 4, "hc2cfdft_4", twinstr, &GENUS, {24, 14, 6, 0} };
Chris@19 213
Chris@19 214 void X(codelet_hc2cfdft_4) (planner *p) {
Chris@19 215 X(khc2c_register) (p, hc2cfdft_4, &desc, HC2C_VIA_DFT);
Chris@19 216 }
Chris@19 217 #endif /* HAVE_FMA */