annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_13.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 76 FP additions, 58 FP multiplications,
Chris@19 32 * (or, 18 additions, 0 multiplications, 58 fused multiply/add),
Chris@19 33 * 76 stack variables, 26 constants, and 26 memory accesses
Chris@19 34 */
Chris@19 35 #include "r2cb.h"
Chris@19 36
Chris@19 37 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DK(KP968287244, +0.968287244361984016049539446938120421179794516);
Chris@19 40 DK(KP875502302, +0.875502302409147941146295545768755143177842006);
Chris@19 41 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
Chris@19 42 DK(KP1_040057143, +1.040057143777729238234261000998465604986476278);
Chris@19 43 DK(KP1_200954543, +1.200954543865330565851538506669526018704025697);
Chris@19 44 DK(KP769338817, +0.769338817572980603471413688209101117038278899);
Chris@19 45 DK(KP600925212, +0.600925212577331548853203544578415991041882762);
Chris@19 46 DK(KP1_033041561, +1.033041561246979445681802577138034271410067244);
Chris@19 47 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
Chris@19 48 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
Chris@19 49 DK(KP581704778, +0.581704778510515730456870384989698884939833902);
Chris@19 50 DK(KP859542535, +0.859542535098774820163672132761689612766401925);
Chris@19 51 DK(KP166666666, +0.166666666666666666666666666666666666666666667);
Chris@19 52 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 53 DK(KP301479260, +0.301479260047709873958013540496673347309208464);
Chris@19 54 DK(KP226109445, +0.226109445035782405468510155372505010481906348);
Chris@19 55 DK(KP686558370, +0.686558370781754340655719594850823015421401653);
Chris@19 56 DK(KP514918778, +0.514918778086315755491789696138117261566051239);
Chris@19 57 DK(KP957805992, +0.957805992594665126462521754605754580515587217);
Chris@19 58 DK(KP522026385, +0.522026385161275033714027226654165028300441940);
Chris@19 59 DK(KP853480001, +0.853480001859823990758994934970528322872359049);
Chris@19 60 DK(KP038632954, +0.038632954644348171955506895830342264440241080);
Chris@19 61 DK(KP612264650, +0.612264650376756543746494474777125408779395514);
Chris@19 62 DK(KP302775637, +0.302775637731994646559610633735247973125648287);
Chris@19 63 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 64 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 65 {
Chris@19 66 INT i;
Chris@19 67 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
Chris@19 68 E TW, T14, TS, TO, T18, T1e, TY, TX, TQ, Tq, TP, Tl, T1d, Tr;
Chris@19 69 {
Chris@19 70 E T1, TN, T16, TJ, TV, TG, TU, Tf, T2, T3, Tb, Ti, T4;
Chris@19 71 {
Chris@19 72 E Ts, TB, Tx, Ty, Tv, TE, Tt, Tu, Tz, TC;
Chris@19 73 Ts = Ci[WS(csi, 5)];
Chris@19 74 Tt = Ci[WS(csi, 2)];
Chris@19 75 Tu = Ci[WS(csi, 6)];
Chris@19 76 TB = Ci[WS(csi, 1)];
Chris@19 77 Tx = Ci[WS(csi, 3)];
Chris@19 78 Ty = Ci[WS(csi, 4)];
Chris@19 79 Tv = Tt + Tu;
Chris@19 80 TE = Tu - Tt;
Chris@19 81 T1 = Cr[0];
Chris@19 82 Tz = Tx + Ty;
Chris@19 83 TC = Tx - Ty;
Chris@19 84 {
Chris@19 85 E TL, Tw, T7, Ta;
Chris@19 86 TL = Ts + Tv;
Chris@19 87 Tw = FNMS(KP500000000, Tv, Ts);
Chris@19 88 T7 = Cr[WS(csr, 5)];
Chris@19 89 {
Chris@19 90 E TD, TM, TA, TH;
Chris@19 91 TD = FNMS(KP500000000, TC, TB);
Chris@19 92 TM = TB + TC;
Chris@19 93 TA = FMA(KP866025403, Tz, Tw);
Chris@19 94 TH = FNMS(KP866025403, Tz, Tw);
Chris@19 95 TN = FMA(KP302775637, TM, TL);
Chris@19 96 T16 = FNMS(KP302775637, TL, TM);
Chris@19 97 {
Chris@19 98 E TF, TI, T8, T9;
Chris@19 99 TF = FMA(KP866025403, TE, TD);
Chris@19 100 TI = FNMS(KP866025403, TE, TD);
Chris@19 101 T8 = Cr[WS(csr, 2)];
Chris@19 102 T9 = Cr[WS(csr, 6)];
Chris@19 103 TJ = FNMS(KP612264650, TI, TH);
Chris@19 104 TV = FMA(KP612264650, TH, TI);
Chris@19 105 TG = FNMS(KP038632954, TF, TA);
Chris@19 106 TU = FMA(KP038632954, TA, TF);
Chris@19 107 Tf = T8 - T9;
Chris@19 108 Ta = T8 + T9;
Chris@19 109 }
Chris@19 110 }
Chris@19 111 T2 = Cr[WS(csr, 1)];
Chris@19 112 T3 = Cr[WS(csr, 3)];
Chris@19 113 Tb = T7 + Ta;
Chris@19 114 Ti = FMS(KP500000000, Ta, T7);
Chris@19 115 T4 = Cr[WS(csr, 4)];
Chris@19 116 }
Chris@19 117 }
Chris@19 118 {
Chris@19 119 E T17, TK, T5, Te, Tk, Td;
Chris@19 120 TW = FMA(KP853480001, TV, TU);
Chris@19 121 T17 = FNMS(KP853480001, TV, TU);
Chris@19 122 TK = FNMS(KP853480001, TJ, TG);
Chris@19 123 T14 = FMA(KP853480001, TJ, TG);
Chris@19 124 T5 = T3 + T4;
Chris@19 125 Te = T3 - T4;
Chris@19 126 {
Chris@19 127 E Tn, Tg, Th, T6;
Chris@19 128 TS = FNMS(KP522026385, TK, TN);
Chris@19 129 TO = FMA(KP957805992, TN, TK);
Chris@19 130 Tn = Te - Tf;
Chris@19 131 Tg = Te + Tf;
Chris@19 132 Th = FNMS(KP500000000, T5, T2);
Chris@19 133 T6 = T2 + T5;
Chris@19 134 T18 = FNMS(KP522026385, T17, T16);
Chris@19 135 T1e = FMA(KP957805992, T16, T17);
Chris@19 136 {
Chris@19 137 E Tm, Tj, Tc, Tp, To;
Chris@19 138 Tm = Th + Ti;
Chris@19 139 Tj = Th - Ti;
Chris@19 140 Tc = T6 + Tb;
Chris@19 141 Tp = T6 - Tb;
Chris@19 142 To = FNMS(KP514918778, Tn, Tm);
Chris@19 143 TY = FMA(KP686558370, Tm, Tn);
Chris@19 144 TX = FNMS(KP226109445, Tg, Tj);
Chris@19 145 Tk = FMA(KP301479260, Tj, Tg);
Chris@19 146 R0[0] = FMA(KP2_000000000, Tc, T1);
Chris@19 147 Td = FNMS(KP166666666, Tc, T1);
Chris@19 148 TQ = FNMS(KP859542535, To, Tp);
Chris@19 149 Tq = FMA(KP581704778, Tp, To);
Chris@19 150 }
Chris@19 151 }
Chris@19 152 TP = FNMS(KP503537032, Tk, Td);
Chris@19 153 Tl = FMA(KP1_007074065, Tk, Td);
Chris@19 154 }
Chris@19 155 }
Chris@19 156 T1d = FNMS(KP1_033041561, Tq, Tl);
Chris@19 157 Tr = FMA(KP1_033041561, Tq, Tl);
Chris@19 158 {
Chris@19 159 E T13, TR, T19, TZ;
Chris@19 160 T13 = FNMS(KP600925212, TQ, TP);
Chris@19 161 TR = FMA(KP600925212, TQ, TP);
Chris@19 162 T19 = FMA(KP769338817, TY, TX);
Chris@19 163 TZ = FNMS(KP769338817, TY, TX);
Chris@19 164 R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d);
Chris@19 165 R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d);
Chris@19 166 R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr);
Chris@19 167 R1[0] = FNMS(KP1_200954543, TO, Tr);
Chris@19 168 {
Chris@19 169 E T1b, T15, T11, TT;
Chris@19 170 T1b = FNMS(KP1_040057143, T14, T13);
Chris@19 171 T15 = FMA(KP1_040057143, T14, T13);
Chris@19 172 T11 = FMA(KP1_150281458, TS, TR);
Chris@19 173 TT = FNMS(KP1_150281458, TS, TR);
Chris@19 174 {
Chris@19 175 E T1c, T1a, T12, T10;
Chris@19 176 T1c = FMA(KP875502302, T19, T18);
Chris@19 177 T1a = FNMS(KP875502302, T19, T18);
Chris@19 178 T12 = FMA(KP968287244, TZ, TW);
Chris@19 179 T10 = FNMS(KP968287244, TZ, TW);
Chris@19 180 R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b);
Chris@19 181 R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b);
Chris@19 182 R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15);
Chris@19 183 R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15);
Chris@19 184 R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11);
Chris@19 185 R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11);
Chris@19 186 R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT);
Chris@19 187 R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT);
Chris@19 188 }
Chris@19 189 }
Chris@19 190 }
Chris@19 191 }
Chris@19 192 }
Chris@19 193 }
Chris@19 194
Chris@19 195 static const kr2c_desc desc = { 13, "r2cb_13", {18, 0, 58, 0}, &GENUS };
Chris@19 196
Chris@19 197 void X(codelet_r2cb_13) (planner *p) {
Chris@19 198 X(kr2c_register) (p, r2cb_13, &desc);
Chris@19 199 }
Chris@19 200
Chris@19 201 #else /* HAVE_FMA */
Chris@19 202
Chris@19 203 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */
Chris@19 204
Chris@19 205 /*
Chris@19 206 * This function contains 76 FP additions, 35 FP multiplications,
Chris@19 207 * (or, 56 additions, 15 multiplications, 20 fused multiply/add),
Chris@19 208 * 56 stack variables, 19 constants, and 26 memory accesses
Chris@19 209 */
Chris@19 210 #include "r2cb.h"
Chris@19 211
Chris@19 212 static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 213 {
Chris@19 214 DK(KP1_007074065, +1.007074065727533254493747707736933954186697125);
Chris@19 215 DK(KP227708958, +0.227708958111581597949308691735310621069285120);
Chris@19 216 DK(KP531932498, +0.531932498429674575175042127684371897596660533);
Chris@19 217 DK(KP774781170, +0.774781170935234584261351932853525703557550433);
Chris@19 218 DK(KP265966249, +0.265966249214837287587521063842185948798330267);
Chris@19 219 DK(KP516520780, +0.516520780623489722840901288569017135705033622);
Chris@19 220 DK(KP151805972, +0.151805972074387731966205794490207080712856746);
Chris@19 221 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
Chris@19 222 DK(KP166666666, +0.166666666666666666666666666666666666666666667);
Chris@19 223 DK(KP600925212, +0.600925212577331548853203544578415991041882762);
Chris@19 224 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 225 DK(KP256247671, +0.256247671582936600958684654061725059144125175);
Chris@19 226 DK(KP156891391, +0.156891391051584611046832726756003269660212636);
Chris@19 227 DK(KP348277202, +0.348277202304271810011321589858529485233929352);
Chris@19 228 DK(KP1_150281458, +1.150281458948006242736771094910906776922003215);
Chris@19 229 DK(KP300238635, +0.300238635966332641462884626667381504676006424);
Chris@19 230 DK(KP011599105, +0.011599105605768290721655456654083252189827041);
Chris@19 231 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@19 232 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 233 {
Chris@19 234 INT i;
Chris@19 235 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) {
Chris@19 236 E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To;
Chris@19 237 E Tp;
Chris@19 238 {
Chris@19 239 E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF;
Chris@19 240 {
Chris@19 241 E Tt, Tu, Tx, Ty;
Chris@19 242 Ts = Ci[WS(csi, 1)];
Chris@19 243 Tt = Ci[WS(csi, 3)];
Chris@19 244 Tu = Ci[WS(csi, 4)];
Chris@19 245 Tv = Tt - Tu;
Chris@19 246 Tw = FMS(KP2_000000000, Ts, Tv);
Chris@19 247 TE = KP1_732050807 * (Tt + Tu);
Chris@19 248 TC = Ci[WS(csi, 5)];
Chris@19 249 Tx = Ci[WS(csi, 6)];
Chris@19 250 Ty = Ci[WS(csi, 2)];
Chris@19 251 TB = Tx + Ty;
Chris@19 252 Tz = KP1_732050807 * (Tx - Ty);
Chris@19 253 TD = FNMS(KP2_000000000, TC, TB);
Chris@19 254 }
Chris@19 255 TA = Tw + Tz;
Chris@19 256 TF = TD - TE;
Chris@19 257 TG = FMA(KP011599105, TA, KP300238635 * TF);
Chris@19 258 TS = FNMS(KP011599105, TF, KP300238635 * TA);
Chris@19 259 {
Chris@19 260 E TP, TQ, TH, TI;
Chris@19 261 TP = Ts + Tv;
Chris@19 262 TQ = TB + TC;
Chris@19 263 TR = FNMS(KP348277202, TQ, KP1_150281458 * TP);
Chris@19 264 T15 = FMA(KP348277202, TP, KP1_150281458 * TQ);
Chris@19 265 TH = Tw - Tz;
Chris@19 266 TI = TE + TD;
Chris@19 267 TJ = FMA(KP156891391, TH, KP256247671 * TI);
Chris@19 268 TT = FNMS(KP256247671, TH, KP156891391 * TI);
Chris@19 269 }
Chris@19 270 }
Chris@19 271 {
Chris@19 272 E Tb, Ti, Tf, T6, Th, Te;
Chris@19 273 T1 = Cr[0];
Chris@19 274 {
Chris@19 275 E T7, T8, T9, Ta;
Chris@19 276 T7 = Cr[WS(csr, 5)];
Chris@19 277 T8 = Cr[WS(csr, 2)];
Chris@19 278 T9 = Cr[WS(csr, 6)];
Chris@19 279 Ta = T8 + T9;
Chris@19 280 Tb = T7 + Ta;
Chris@19 281 Ti = FNMS(KP500000000, Ta, T7);
Chris@19 282 Tf = T8 - T9;
Chris@19 283 }
Chris@19 284 {
Chris@19 285 E T2, T3, T4, T5;
Chris@19 286 T2 = Cr[WS(csr, 1)];
Chris@19 287 T3 = Cr[WS(csr, 3)];
Chris@19 288 T4 = Cr[WS(csr, 4)];
Chris@19 289 T5 = T3 + T4;
Chris@19 290 T6 = T2 + T5;
Chris@19 291 Th = FNMS(KP500000000, T5, T2);
Chris@19 292 Te = T3 - T4;
Chris@19 293 }
Chris@19 294 Tm = KP600925212 * (T6 - Tb);
Chris@19 295 Tc = T6 + Tb;
Chris@19 296 Td = FNMS(KP166666666, Tc, T1);
Chris@19 297 Tg = Te + Tf;
Chris@19 298 Tj = Th + Ti;
Chris@19 299 Tk = FMA(KP503537032, Tg, KP151805972 * Tj);
Chris@19 300 Tn = Th - Ti;
Chris@19 301 To = Te - Tf;
Chris@19 302 Tp = FNMS(KP265966249, To, KP516520780 * Tn);
Chris@19 303 }
Chris@19 304 R0[0] = FMA(KP2_000000000, Tc, T1);
Chris@19 305 {
Chris@19 306 E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13;
Chris@19 307 {
Chris@19 308 E TU, T14, TM, TN;
Chris@19 309 TK = KP1_732050807 * (TG + TJ);
Chris@19 310 T1b = KP1_732050807 * (TS - TT);
Chris@19 311 TU = TS + TT;
Chris@19 312 TV = TR - TU;
Chris@19 313 T12 = FMA(KP2_000000000, TU, TR);
Chris@19 314 T14 = TG - TJ;
Chris@19 315 T16 = FMS(KP2_000000000, T14, T15);
Chris@19 316 T18 = T14 + T15;
Chris@19 317 TM = FMA(KP774781170, To, KP531932498 * Tn);
Chris@19 318 TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg);
Chris@19 319 TO = TM - TN;
Chris@19 320 T1a = TM + TN;
Chris@19 321 {
Chris@19 322 E Tl, Tq, TZ, T10;
Chris@19 323 Tl = Td - Tk;
Chris@19 324 Tq = Tm - Tp;
Chris@19 325 Tr = Tl - Tq;
Chris@19 326 T17 = Tq + Tl;
Chris@19 327 TZ = FMA(KP2_000000000, Tk, Td);
Chris@19 328 T10 = FMA(KP2_000000000, Tp, Tm);
Chris@19 329 T11 = TZ - T10;
Chris@19 330 T13 = T10 + TZ;
Chris@19 331 }
Chris@19 332 }
Chris@19 333 R1[WS(rs, 2)] = T11 - T12;
Chris@19 334 R0[WS(rs, 6)] = T13 - T16;
Chris@19 335 R1[0] = T13 + T16;
Chris@19 336 R0[WS(rs, 4)] = T11 + T12;
Chris@19 337 {
Chris@19 338 E TL, TW, T19, T1c;
Chris@19 339 TL = Tr - TK;
Chris@19 340 TW = TO - TV;
Chris@19 341 R1[WS(rs, 3)] = TL - TW;
Chris@19 342 R0[WS(rs, 1)] = TL + TW;
Chris@19 343 T19 = T17 - T18;
Chris@19 344 T1c = T1a + T1b;
Chris@19 345 R1[WS(rs, 1)] = T19 - T1c;
Chris@19 346 R1[WS(rs, 4)] = T1c + T19;
Chris@19 347 }
Chris@19 348 {
Chris@19 349 E T1d, T1e, TX, TY;
Chris@19 350 T1d = T1a - T1b;
Chris@19 351 T1e = T17 + T18;
Chris@19 352 R0[WS(rs, 2)] = T1d + T1e;
Chris@19 353 R0[WS(rs, 5)] = T1e - T1d;
Chris@19 354 TX = Tr + TK;
Chris@19 355 TY = TO + TV;
Chris@19 356 R0[WS(rs, 3)] = TX - TY;
Chris@19 357 R1[WS(rs, 5)] = TX + TY;
Chris@19 358 }
Chris@19 359 }
Chris@19 360 }
Chris@19 361 }
Chris@19 362 }
Chris@19 363
Chris@19 364 static const kr2c_desc desc = { 13, "r2cb_13", {56, 15, 20, 0}, &GENUS };
Chris@19 365
Chris@19 366 void X(codelet_r2cb_13) (planner *p) {
Chris@19 367 X(kr2c_register) (p, r2cb_13, &desc);
Chris@19 368 }
Chris@19 369
Chris@19 370 #endif /* HAVE_FMA */