annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cb_10.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:24 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 34 FP additions, 20 FP multiplications,
Chris@19 32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
Chris@19 33 * 30 stack variables, 5 constants, and 20 memory accesses
Chris@19 34 */
Chris@19 35 #include "r2cb.h"
Chris@19 36
Chris@19 37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@19 40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@19 41 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 44 {
Chris@19 45 INT i;
Chris@19 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 47 E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9;
Chris@19 48 {
Chris@19 49 E Tu, Tn, T7, Tv, Tk, T8;
Chris@19 50 {
Chris@19 51 E T1, T2, Tl, Tm;
Chris@19 52 T1 = Cr[0];
Chris@19 53 T2 = Cr[WS(csr, 5)];
Chris@19 54 Tl = Ci[WS(csi, 2)];
Chris@19 55 Tm = Ci[WS(csi, 3)];
Chris@19 56 {
Chris@19 57 E Ti, Tj, T4, T5;
Chris@19 58 Ti = Ci[WS(csi, 4)];
Chris@19 59 Tb = T1 + T2;
Chris@19 60 T3 = T1 - T2;
Chris@19 61 Tu = Tl + Tm;
Chris@19 62 Tn = Tl - Tm;
Chris@19 63 Tj = Ci[WS(csi, 1)];
Chris@19 64 T4 = Cr[WS(csr, 2)];
Chris@19 65 T5 = Cr[WS(csr, 3)];
Chris@19 66 T7 = Cr[WS(csr, 4)];
Chris@19 67 Tv = Ti + Tj;
Chris@19 68 Tk = Ti - Tj;
Chris@19 69 Tc = T4 + T5;
Chris@19 70 T6 = T4 - T5;
Chris@19 71 T8 = Cr[WS(csr, 1)];
Chris@19 72 }
Chris@19 73 }
Chris@19 74 Tq = FMA(KP618033988, Tk, Tn);
Chris@19 75 To = FNMS(KP618033988, Tn, Tk);
Chris@19 76 Ty = FNMS(KP618033988, Tu, Tv);
Chris@19 77 Tw = FMA(KP618033988, Tv, Tu);
Chris@19 78 Td = T7 + T8;
Chris@19 79 T9 = T7 - T8;
Chris@19 80 }
Chris@19 81 {
Chris@19 82 E Te, Tg, Ta, Ts, Tf, Tr;
Chris@19 83 Te = Tc + Td;
Chris@19 84 Tg = Tc - Td;
Chris@19 85 Ta = T6 + T9;
Chris@19 86 Ts = T6 - T9;
Chris@19 87 Tf = FNMS(KP500000000, Te, Tb);
Chris@19 88 R0[0] = FMA(KP2_000000000, Te, Tb);
Chris@19 89 Tr = FNMS(KP500000000, Ta, T3);
Chris@19 90 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
Chris@19 91 {
Chris@19 92 E Th, Tp, Tt, Tx;
Chris@19 93 Th = FNMS(KP1_118033988, Tg, Tf);
Chris@19 94 Tp = FMA(KP1_118033988, Tg, Tf);
Chris@19 95 Tt = FMA(KP1_118033988, Ts, Tr);
Chris@19 96 Tx = FNMS(KP1_118033988, Ts, Tr);
Chris@19 97 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
Chris@19 98 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
Chris@19 99 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
Chris@19 100 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
Chris@19 101 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
Chris@19 102 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
Chris@19 103 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
Chris@19 104 R1[0] = FNMS(KP1_902113032, Tw, Tt);
Chris@19 105 }
Chris@19 106 }
Chris@19 107 }
Chris@19 108 }
Chris@19 109 }
Chris@19 110
Chris@19 111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
Chris@19 112
Chris@19 113 void X(codelet_r2cb_10) (planner *p) {
Chris@19 114 X(kr2c_register) (p, r2cb_10, &desc);
Chris@19 115 }
Chris@19 116
Chris@19 117 #else /* HAVE_FMA */
Chris@19 118
Chris@19 119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
Chris@19 120
Chris@19 121 /*
Chris@19 122 * This function contains 34 FP additions, 14 FP multiplications,
Chris@19 123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
Chris@19 124 * 26 stack variables, 5 constants, and 20 memory accesses
Chris@19 125 */
Chris@19 126 #include "r2cb.h"
Chris@19 127
Chris@19 128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 129 {
Chris@19 130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@19 132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
Chris@19 133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@19 135 {
Chris@19 136 INT i;
Chris@19 137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
Chris@19 139 {
Chris@19 140 E T1, T2, Tl, Tm;
Chris@19 141 T1 = Cr[0];
Chris@19 142 T2 = Cr[WS(csr, 5)];
Chris@19 143 T3 = T1 - T2;
Chris@19 144 Tb = T1 + T2;
Chris@19 145 Tl = Ci[WS(csi, 4)];
Chris@19 146 Tm = Ci[WS(csi, 1)];
Chris@19 147 Tn = Tl - Tm;
Chris@19 148 Tv = Tl + Tm;
Chris@19 149 }
Chris@19 150 Ti = Ci[WS(csi, 2)];
Chris@19 151 Tj = Ci[WS(csi, 3)];
Chris@19 152 Tk = Ti - Tj;
Chris@19 153 Tu = Ti + Tj;
Chris@19 154 {
Chris@19 155 E T6, Tc, T9, Td;
Chris@19 156 {
Chris@19 157 E T4, T5, T7, T8;
Chris@19 158 T4 = Cr[WS(csr, 2)];
Chris@19 159 T5 = Cr[WS(csr, 3)];
Chris@19 160 T6 = T4 - T5;
Chris@19 161 Tc = T4 + T5;
Chris@19 162 T7 = Cr[WS(csr, 4)];
Chris@19 163 T8 = Cr[WS(csr, 1)];
Chris@19 164 T9 = T7 - T8;
Chris@19 165 Td = T7 + T8;
Chris@19 166 }
Chris@19 167 Ta = T6 + T9;
Chris@19 168 Ts = KP1_118033988 * (T6 - T9);
Chris@19 169 Te = Tc + Td;
Chris@19 170 Tg = KP1_118033988 * (Tc - Td);
Chris@19 171 }
Chris@19 172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
Chris@19 173 R0[0] = FMA(KP2_000000000, Te, Tb);
Chris@19 174 {
Chris@19 175 E To, Tq, Th, Tp, Tf;
Chris@19 176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
Chris@19 177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
Chris@19 178 Tf = FNMS(KP500000000, Te, Tb);
Chris@19 179 Th = Tf - Tg;
Chris@19 180 Tp = Tg + Tf;
Chris@19 181 R0[WS(rs, 1)] = Th - To;
Chris@19 182 R0[WS(rs, 2)] = Tp + Tq;
Chris@19 183 R0[WS(rs, 4)] = Th + To;
Chris@19 184 R0[WS(rs, 3)] = Tp - Tq;
Chris@19 185 }
Chris@19 186 {
Chris@19 187 E Tw, Ty, Tt, Tx, Tr;
Chris@19 188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
Chris@19 189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
Chris@19 190 Tr = FNMS(KP500000000, Ta, T3);
Chris@19 191 Tt = Tr - Ts;
Chris@19 192 Tx = Ts + Tr;
Chris@19 193 R1[WS(rs, 3)] = Tt - Tw;
Chris@19 194 R1[WS(rs, 4)] = Tx + Ty;
Chris@19 195 R1[WS(rs, 1)] = Tt + Tw;
Chris@19 196 R1[0] = Tx - Ty;
Chris@19 197 }
Chris@19 198 }
Chris@19 199 }
Chris@19 200 }
Chris@19 201
Chris@19 202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
Chris@19 203
Chris@19 204 void X(codelet_r2cb_10) (planner *p) {
Chris@19 205 X(kr2c_register) (p, r2cb_10, &desc);
Chris@19 206 }
Chris@19 207
Chris@19 208 #endif /* HAVE_FMA */