annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/r2cbIII_10.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:33 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 32 FP additions, 28 FP multiplications,
Chris@19 32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
Chris@19 33 * 38 stack variables, 5 constants, and 20 memory accesses
Chris@19 34 */
Chris@19 35 #include "r2cbIII.h"
Chris@19 36
Chris@19 37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 44 {
Chris@19 45 INT i;
Chris@19 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 47 E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
Chris@19 48 {
Chris@19 49 E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9;
Chris@19 50 T1 = Cr[WS(csr, 2)];
Chris@19 51 To = Ci[WS(csi, 2)];
Chris@19 52 {
Chris@19 53 E T2, T3, T5, T6;
Chris@19 54 T2 = Cr[WS(csr, 4)];
Chris@19 55 T3 = Cr[0];
Chris@19 56 T5 = Cr[WS(csr, 3)];
Chris@19 57 T6 = Cr[WS(csr, 1)];
Chris@19 58 {
Chris@19 59 E Tc, T4, T7, Td, Tf, Tg;
Chris@19 60 Tc = Ci[WS(csi, 3)];
Chris@19 61 Ts = T2 - T3;
Chris@19 62 T4 = T2 + T3;
Chris@19 63 Tt = T5 - T6;
Chris@19 64 T7 = T5 + T6;
Chris@19 65 Td = Ci[WS(csi, 1)];
Chris@19 66 Tf = Ci[WS(csi, 4)];
Chris@19 67 Tg = Ci[0];
Chris@19 68 T8 = T4 + T7;
Chris@19 69 Ta = T7 - T4;
Chris@19 70 Te = Tc - Td;
Chris@19 71 Tl = Tc + Td;
Chris@19 72 Tm = Tf + Tg;
Chris@19 73 Th = Tf - Tg;
Chris@19 74 }
Chris@19 75 }
Chris@19 76 R0[0] = KP2_000000000 * (T1 + T8);
Chris@19 77 Tn = Tl - Tm;
Chris@19 78 Tq = Tl + Tm;
Chris@19 79 Ti = FMA(KP618033988, Th, Te);
Chris@19 80 Tk = FNMS(KP618033988, Te, Th);
Chris@19 81 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
Chris@19 82 T9 = FMS(KP250000000, T8, T1);
Chris@19 83 Tu = FMA(KP618033988, Tt, Ts);
Chris@19 84 Tw = FNMS(KP618033988, Ts, Tt);
Chris@19 85 Tp = FMA(KP250000000, Tn, To);
Chris@19 86 Tb = FNMS(KP559016994, Ta, T9);
Chris@19 87 Tj = FMA(KP559016994, Ta, T9);
Chris@19 88 }
Chris@19 89 Tr = FMA(KP559016994, Tq, Tp);
Chris@19 90 Tv = FNMS(KP559016994, Tq, Tp);
Chris@19 91 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
Chris@19 92 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
Chris@19 93 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
Chris@19 94 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
Chris@19 95 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
Chris@19 96 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
Chris@19 97 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
Chris@19 98 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
Chris@19 99 }
Chris@19 100 }
Chris@19 101 }
Chris@19 102
Chris@19 103 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
Chris@19 104
Chris@19 105 void X(codelet_r2cbIII_10) (planner *p) {
Chris@19 106 X(kr2c_register) (p, r2cbIII_10, &desc);
Chris@19 107 }
Chris@19 108
Chris@19 109 #else /* HAVE_FMA */
Chris@19 110
Chris@19 111 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
Chris@19 112
Chris@19 113 /*
Chris@19 114 * This function contains 32 FP additions, 16 FP multiplications,
Chris@19 115 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
Chris@19 116 * 22 stack variables, 5 constants, and 20 memory accesses
Chris@19 117 */
Chris@19 118 #include "r2cbIII.h"
Chris@19 119
Chris@19 120 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@19 121 {
Chris@19 122 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 123 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@19 124 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
Chris@19 125 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@19 126 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@19 127 {
Chris@19 128 INT i;
Chris@19 129 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@19 130 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
Chris@19 131 T1 = Cr[WS(csr, 2)];
Chris@19 132 To = Ci[WS(csi, 2)];
Chris@19 133 {
Chris@19 134 E T2, T3, T4, T5, T6, T7;
Chris@19 135 T2 = Cr[WS(csr, 4)];
Chris@19 136 T3 = Cr[0];
Chris@19 137 T4 = T2 + T3;
Chris@19 138 T5 = Cr[WS(csr, 3)];
Chris@19 139 T6 = Cr[WS(csr, 1)];
Chris@19 140 T7 = T5 + T6;
Chris@19 141 T8 = T4 + T7;
Chris@19 142 Tq = T5 - T6;
Chris@19 143 Ta = KP1_118033988 * (T7 - T4);
Chris@19 144 Tp = T2 - T3;
Chris@19 145 }
Chris@19 146 {
Chris@19 147 E Tc, Td, Tm, Tf, Tg, Tl;
Chris@19 148 Tc = Ci[WS(csi, 4)];
Chris@19 149 Td = Ci[0];
Chris@19 150 Tm = Tc + Td;
Chris@19 151 Tf = Ci[WS(csi, 1)];
Chris@19 152 Tg = Ci[WS(csi, 3)];
Chris@19 153 Tl = Tg + Tf;
Chris@19 154 Te = Tc - Td;
Chris@19 155 Ts = KP1_118033988 * (Tl + Tm);
Chris@19 156 Th = Tf - Tg;
Chris@19 157 Tn = Tl - Tm;
Chris@19 158 }
Chris@19 159 R0[0] = KP2_000000000 * (T1 + T8);
Chris@19 160 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
Chris@19 161 {
Chris@19 162 E Ti, Tj, Tb, Tk, T9;
Chris@19 163 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
Chris@19 164 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
Chris@19 165 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
Chris@19 166 Tb = T9 - Ta;
Chris@19 167 Tk = T9 + Ta;
Chris@19 168 R0[WS(rs, 1)] = Tb + Ti;
Chris@19 169 R0[WS(rs, 3)] = Tk + Tj;
Chris@19 170 R0[WS(rs, 4)] = Ti - Tb;
Chris@19 171 R0[WS(rs, 2)] = Tj - Tk;
Chris@19 172 }
Chris@19 173 {
Chris@19 174 E Tr, Tv, Tu, Tw, Tt;
Chris@19 175 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
Chris@19 176 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
Chris@19 177 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
Chris@19 178 Tu = Ts + Tt;
Chris@19 179 Tw = Tt - Ts;
Chris@19 180 R1[0] = -(Tr + Tu);
Chris@19 181 R1[WS(rs, 3)] = Tw - Tv;
Chris@19 182 R1[WS(rs, 4)] = Tr - Tu;
Chris@19 183 R1[WS(rs, 1)] = Tv + Tw;
Chris@19 184 }
Chris@19 185 }
Chris@19 186 }
Chris@19 187 }
Chris@19 188
Chris@19 189 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
Chris@19 190
Chris@19 191 void X(codelet_r2cbIII_10) (planner *p) {
Chris@19 192 X(kr2c_register) (p, r2cbIII_10, &desc);
Chris@19 193 }
Chris@19 194
Chris@19 195 #endif /* HAVE_FMA */