annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cbdft_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:44 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 58 FP additions, 32 FP multiplications,
Chris@19 32 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
Chris@19 33 * 52 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cb.h"
Chris@19 36
Chris@19 37 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 44 E T18, T1b, T16, T1e, T1a, T1f, T19, T1g, T1c;
Chris@19 45 {
Chris@19 46 E Tw, T4, TV, Tj, TP, TH, Tr, TY, T5, T6, Ta, Ty;
Chris@19 47 {
Chris@19 48 E Tg, TF, Tf, TD, Tp, Th;
Chris@19 49 {
Chris@19 50 E Td, Te, Tn, To;
Chris@19 51 Td = Ip[WS(rs, 1)];
Chris@19 52 Te = Im[WS(rs, 1)];
Chris@19 53 Tn = Ip[0];
Chris@19 54 To = Im[WS(rs, 2)];
Chris@19 55 Tg = Ip[WS(rs, 2)];
Chris@19 56 TF = Te + Td;
Chris@19 57 Tf = Td - Te;
Chris@19 58 TD = Tn + To;
Chris@19 59 Tp = Tn - To;
Chris@19 60 Th = Im[0];
Chris@19 61 }
Chris@19 62 {
Chris@19 63 E T2, T3, T8, T9;
Chris@19 64 T2 = Rp[0];
Chris@19 65 T3 = Rm[WS(rs, 2)];
Chris@19 66 {
Chris@19 67 E Tq, TE, Ti, TG;
Chris@19 68 T8 = Rm[WS(rs, 1)];
Chris@19 69 TE = Tg + Th;
Chris@19 70 Ti = Tg - Th;
Chris@19 71 Tw = T2 - T3;
Chris@19 72 T4 = T2 + T3;
Chris@19 73 TG = TE - TF;
Chris@19 74 TV = TF + TE;
Chris@19 75 Tq = Tf + Ti;
Chris@19 76 Tj = Tf - Ti;
Chris@19 77 TP = FNMS(KP500000000, TG, TD);
Chris@19 78 TH = TD + TG;
Chris@19 79 T9 = Rp[WS(rs, 1)];
Chris@19 80 Tr = FNMS(KP500000000, Tq, Tp);
Chris@19 81 TY = Tp + Tq;
Chris@19 82 }
Chris@19 83 T5 = Rp[WS(rs, 2)];
Chris@19 84 T6 = Rm[0];
Chris@19 85 Ta = T8 + T9;
Chris@19 86 Ty = T8 - T9;
Chris@19 87 }
Chris@19 88 }
Chris@19 89 {
Chris@19 90 E TO, TT, Ts, TA, TR, Tc, TN, TW, TS, Tx, T7;
Chris@19 91 Tx = T5 - T6;
Chris@19 92 T7 = T5 + T6;
Chris@19 93 TO = W[0];
Chris@19 94 TT = W[1];
Chris@19 95 {
Chris@19 96 E Tz, TQ, Tb, TU;
Chris@19 97 Tz = Tx + Ty;
Chris@19 98 TQ = Tx - Ty;
Chris@19 99 Tb = T7 + Ta;
Chris@19 100 Ts = T7 - Ta;
Chris@19 101 TU = FNMS(KP500000000, Tz, Tw);
Chris@19 102 TA = Tw + Tz;
Chris@19 103 TR = FMA(KP866025403, TQ, TP);
Chris@19 104 T18 = FNMS(KP866025403, TQ, TP);
Chris@19 105 Tc = FNMS(KP500000000, Tb, T4);
Chris@19 106 TN = T4 + Tb;
Chris@19 107 T1b = FMA(KP866025403, TV, TU);
Chris@19 108 TW = FNMS(KP866025403, TV, TU);
Chris@19 109 TS = TO * TR;
Chris@19 110 }
Chris@19 111 {
Chris@19 112 E T15, Tt, T12, T1, Tm, TI, TM, Tl, TJ;
Chris@19 113 {
Chris@19 114 E Tv, TC, TB, TL, Tk, TZ, TX, T10;
Chris@19 115 T15 = FMA(KP866025403, Ts, Tr);
Chris@19 116 Tt = FNMS(KP866025403, Ts, Tr);
Chris@19 117 TZ = TO * TW;
Chris@19 118 TX = FMA(TT, TW, TS);
Chris@19 119 Tv = W[4];
Chris@19 120 TC = W[5];
Chris@19 121 T10 = FNMS(TT, TR, TZ);
Chris@19 122 Rm[0] = TN + TX;
Chris@19 123 Rp[0] = TN - TX;
Chris@19 124 TB = Tv * TA;
Chris@19 125 Im[0] = T10 - TY;
Chris@19 126 Ip[0] = TY + T10;
Chris@19 127 TL = TC * TA;
Chris@19 128 Tk = FNMS(KP866025403, Tj, Tc);
Chris@19 129 T12 = FMA(KP866025403, Tj, Tc);
Chris@19 130 T1 = W[3];
Chris@19 131 Tm = W[2];
Chris@19 132 TI = FNMS(TC, TH, TB);
Chris@19 133 TM = FMA(Tv, TH, TL);
Chris@19 134 Tl = T1 * Tk;
Chris@19 135 TJ = Tm * Tk;
Chris@19 136 }
Chris@19 137 {
Chris@19 138 E T11, T14, T13, T1d, T17, Tu, TK;
Chris@19 139 Tu = FMA(Tm, Tt, Tl);
Chris@19 140 TK = FNMS(T1, Tt, TJ);
Chris@19 141 T11 = W[6];
Chris@19 142 T14 = W[7];
Chris@19 143 Im[WS(rs, 1)] = TI - Tu;
Chris@19 144 Ip[WS(rs, 1)] = Tu + TI;
Chris@19 145 Rm[WS(rs, 1)] = TK + TM;
Chris@19 146 Rp[WS(rs, 1)] = TK - TM;
Chris@19 147 T13 = T11 * T12;
Chris@19 148 T1d = T14 * T12;
Chris@19 149 T17 = W[8];
Chris@19 150 T16 = FNMS(T14, T15, T13);
Chris@19 151 T1e = FMA(T11, T15, T1d);
Chris@19 152 T1a = W[9];
Chris@19 153 T1f = T17 * T1b;
Chris@19 154 T19 = T17 * T18;
Chris@19 155 }
Chris@19 156 }
Chris@19 157 }
Chris@19 158 }
Chris@19 159 T1g = FNMS(T1a, T18, T1f);
Chris@19 160 T1c = FMA(T1a, T1b, T19);
Chris@19 161 Im[WS(rs, 2)] = T1g - T1e;
Chris@19 162 Ip[WS(rs, 2)] = T1e + T1g;
Chris@19 163 Rm[WS(rs, 2)] = T16 + T1c;
Chris@19 164 Rp[WS(rs, 2)] = T16 - T1c;
Chris@19 165 }
Chris@19 166 }
Chris@19 167 }
Chris@19 168
Chris@19 169 static const tw_instr twinstr[] = {
Chris@19 170 {TW_FULL, 1, 6},
Chris@19 171 {TW_NEXT, 1, 0}
Chris@19 172 };
Chris@19 173
Chris@19 174 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {36, 10, 22, 0} };
Chris@19 175
Chris@19 176 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@19 177 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@19 178 }
Chris@19 179 #else /* HAVE_FMA */
Chris@19 180
Chris@19 181 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include hc2cb.h */
Chris@19 182
Chris@19 183 /*
Chris@19 184 * This function contains 58 FP additions, 28 FP multiplications,
Chris@19 185 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
Chris@19 186 * 29 stack variables, 2 constants, and 24 memory accesses
Chris@19 187 */
Chris@19 188 #include "hc2cb.h"
Chris@19 189
Chris@19 190 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 191 {
Chris@19 192 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 193 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 194 {
Chris@19 195 INT m;
Chris@19 196 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@19 197 E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
Chris@19 198 E TM;
Chris@19 199 {
Chris@19 200 E Ta, Tx, T7, Tw, T2, T3;
Chris@19 201 T2 = Rp[0];
Chris@19 202 T3 = Rm[WS(rs, 2)];
Chris@19 203 T4 = T2 + T3;
Chris@19 204 Tv = T2 - T3;
Chris@19 205 {
Chris@19 206 E T8, T9, T5, T6;
Chris@19 207 T8 = Rm[WS(rs, 1)];
Chris@19 208 T9 = Rp[WS(rs, 1)];
Chris@19 209 Ta = T8 + T9;
Chris@19 210 Tx = T8 - T9;
Chris@19 211 T5 = Rp[WS(rs, 2)];
Chris@19 212 T6 = Rm[0];
Chris@19 213 T7 = T5 + T6;
Chris@19 214 Tw = T5 - T6;
Chris@19 215 }
Chris@19 216 Tr = KP866025403 * (T7 - Ta);
Chris@19 217 TL = KP866025403 * (Tw - Tx);
Chris@19 218 Tb = T7 + Ta;
Chris@19 219 Tc = FNMS(KP500000000, Tb, T4);
Chris@19 220 Ty = Tw + Tx;
Chris@19 221 TP = FNMS(KP500000000, Ty, Tv);
Chris@19 222 }
Chris@19 223 {
Chris@19 224 E Tf, TC, Ti, TD, Td, Te;
Chris@19 225 Td = Ip[WS(rs, 1)];
Chris@19 226 Te = Im[WS(rs, 1)];
Chris@19 227 Tf = Td - Te;
Chris@19 228 TC = Te + Td;
Chris@19 229 {
Chris@19 230 E Tm, Tn, Tg, Th;
Chris@19 231 Tm = Ip[0];
Chris@19 232 Tn = Im[WS(rs, 2)];
Chris@19 233 To = Tm - Tn;
Chris@19 234 TB = Tm + Tn;
Chris@19 235 Tg = Ip[WS(rs, 2)];
Chris@19 236 Th = Im[0];
Chris@19 237 Ti = Tg - Th;
Chris@19 238 TD = Tg + Th;
Chris@19 239 }
Chris@19 240 Tj = KP866025403 * (Tf - Ti);
Chris@19 241 TQ = KP866025403 * (TC + TD);
Chris@19 242 Tp = Tf + Ti;
Chris@19 243 Tq = FNMS(KP500000000, Tp, To);
Chris@19 244 TE = TC - TD;
Chris@19 245 TM = FMA(KP500000000, TE, TB);
Chris@19 246 }
Chris@19 247 {
Chris@19 248 E TJ, TT, TS, TU;
Chris@19 249 TJ = T4 + Tb;
Chris@19 250 TT = To + Tp;
Chris@19 251 {
Chris@19 252 E TN, TR, TK, TO;
Chris@19 253 TN = TL + TM;
Chris@19 254 TR = TP - TQ;
Chris@19 255 TK = W[0];
Chris@19 256 TO = W[1];
Chris@19 257 TS = FMA(TK, TN, TO * TR);
Chris@19 258 TU = FNMS(TO, TN, TK * TR);
Chris@19 259 }
Chris@19 260 Rp[0] = TJ - TS;
Chris@19 261 Ip[0] = TT + TU;
Chris@19 262 Rm[0] = TJ + TS;
Chris@19 263 Im[0] = TU - TT;
Chris@19 264 }
Chris@19 265 {
Chris@19 266 E TZ, T15, T14, T16;
Chris@19 267 {
Chris@19 268 E TW, TY, TV, TX;
Chris@19 269 TW = Tc + Tj;
Chris@19 270 TY = Tr + Tq;
Chris@19 271 TV = W[6];
Chris@19 272 TX = W[7];
Chris@19 273 TZ = FNMS(TX, TY, TV * TW);
Chris@19 274 T15 = FMA(TX, TW, TV * TY);
Chris@19 275 }
Chris@19 276 {
Chris@19 277 E T11, T13, T10, T12;
Chris@19 278 T11 = TM - TL;
Chris@19 279 T13 = TP + TQ;
Chris@19 280 T10 = W[8];
Chris@19 281 T12 = W[9];
Chris@19 282 T14 = FMA(T10, T11, T12 * T13);
Chris@19 283 T16 = FNMS(T12, T11, T10 * T13);
Chris@19 284 }
Chris@19 285 Rp[WS(rs, 2)] = TZ - T14;
Chris@19 286 Ip[WS(rs, 2)] = T15 + T16;
Chris@19 287 Rm[WS(rs, 2)] = TZ + T14;
Chris@19 288 Im[WS(rs, 2)] = T16 - T15;
Chris@19 289 }
Chris@19 290 {
Chris@19 291 E Tt, TH, TG, TI;
Chris@19 292 {
Chris@19 293 E Tk, Ts, T1, Tl;
Chris@19 294 Tk = Tc - Tj;
Chris@19 295 Ts = Tq - Tr;
Chris@19 296 T1 = W[3];
Chris@19 297 Tl = W[2];
Chris@19 298 Tt = FMA(T1, Tk, Tl * Ts);
Chris@19 299 TH = FNMS(T1, Ts, Tl * Tk);
Chris@19 300 }
Chris@19 301 {
Chris@19 302 E Tz, TF, Tu, TA;
Chris@19 303 Tz = Tv + Ty;
Chris@19 304 TF = TB - TE;
Chris@19 305 Tu = W[4];
Chris@19 306 TA = W[5];
Chris@19 307 TG = FNMS(TA, TF, Tu * Tz);
Chris@19 308 TI = FMA(TA, Tz, Tu * TF);
Chris@19 309 }
Chris@19 310 Ip[WS(rs, 1)] = Tt + TG;
Chris@19 311 Rp[WS(rs, 1)] = TH - TI;
Chris@19 312 Im[WS(rs, 1)] = TG - Tt;
Chris@19 313 Rm[WS(rs, 1)] = TH + TI;
Chris@19 314 }
Chris@19 315 }
Chris@19 316 }
Chris@19 317 }
Chris@19 318
Chris@19 319 static const tw_instr twinstr[] = {
Chris@19 320 {TW_FULL, 1, 6},
Chris@19 321 {TW_NEXT, 1, 0}
Chris@19 322 };
Chris@19 323
Chris@19 324 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {44, 14, 14, 0} };
Chris@19 325
Chris@19 326 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@19 327 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@19 328 }
Chris@19 329 #endif /* HAVE_FMA */