annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_4.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:37 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include hc2cb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 22 FP additions, 12 FP multiplications,
Chris@19 32 * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
Chris@19 33 * 25 stack variables, 0 constants, and 16 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cb.h"
Chris@19 36
Chris@19 37 static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 {
Chris@19 40 INT m;
Chris@19 41 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 42 E Th, Ta, T7, Ti, T9;
Chris@19 43 {
Chris@19 44 E Tq, Td, T3, Tg, Tu, Tm, T6, Tp;
Chris@19 45 {
Chris@19 46 E Tk, T4, Tl, T5;
Chris@19 47 {
Chris@19 48 E Tb, Tc, T1, T2, Te, Tf;
Chris@19 49 Tb = Ip[0];
Chris@19 50 Tc = Im[WS(rs, 1)];
Chris@19 51 T1 = Rp[0];
Chris@19 52 T2 = Rm[WS(rs, 1)];
Chris@19 53 Te = Ip[WS(rs, 1)];
Chris@19 54 Tq = Tb + Tc;
Chris@19 55 Td = Tb - Tc;
Chris@19 56 Tf = Im[0];
Chris@19 57 Tk = T1 - T2;
Chris@19 58 T3 = T1 + T2;
Chris@19 59 T4 = Rp[WS(rs, 1)];
Chris@19 60 Tg = Te - Tf;
Chris@19 61 Tl = Te + Tf;
Chris@19 62 T5 = Rm[0];
Chris@19 63 }
Chris@19 64 Tu = Tk + Tl;
Chris@19 65 Tm = Tk - Tl;
Chris@19 66 T6 = T4 + T5;
Chris@19 67 Tp = T4 - T5;
Chris@19 68 }
Chris@19 69 Rm[0] = Td + Tg;
Chris@19 70 {
Chris@19 71 E Tx, Tr, T8, Tn, Ts, To, Tj;
Chris@19 72 Tj = W[0];
Chris@19 73 Tx = Tq - Tp;
Chris@19 74 Tr = Tp + Tq;
Chris@19 75 Rp[0] = T3 + T6;
Chris@19 76 T8 = T3 - T6;
Chris@19 77 Tn = Tj * Tm;
Chris@19 78 Ts = Tj * Tr;
Chris@19 79 To = W[1];
Chris@19 80 {
Chris@19 81 E Tt, Tw, Ty, Tv;
Chris@19 82 Tt = W[4];
Chris@19 83 Tw = W[5];
Chris@19 84 Th = Td - Tg;
Chris@19 85 Im[0] = FMA(To, Tm, Ts);
Chris@19 86 Ip[0] = FNMS(To, Tr, Tn);
Chris@19 87 Ty = Tt * Tx;
Chris@19 88 Tv = Tt * Tu;
Chris@19 89 Ta = W[3];
Chris@19 90 T7 = W[2];
Chris@19 91 Im[WS(rs, 1)] = FMA(Tw, Tu, Ty);
Chris@19 92 Ip[WS(rs, 1)] = FNMS(Tw, Tx, Tv);
Chris@19 93 Ti = Ta * T8;
Chris@19 94 T9 = T7 * T8;
Chris@19 95 }
Chris@19 96 }
Chris@19 97 }
Chris@19 98 Rm[WS(rs, 1)] = FMA(T7, Th, Ti);
Chris@19 99 Rp[WS(rs, 1)] = FNMS(Ta, Th, T9);
Chris@19 100 }
Chris@19 101 }
Chris@19 102 }
Chris@19 103
Chris@19 104 static const tw_instr twinstr[] = {
Chris@19 105 {TW_FULL, 1, 4},
Chris@19 106 {TW_NEXT, 1, 0}
Chris@19 107 };
Chris@19 108
Chris@19 109 static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, {16, 6, 6, 0} };
Chris@19 110
Chris@19 111 void X(codelet_hc2cb_4) (planner *p) {
Chris@19 112 X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
Chris@19 113 }
Chris@19 114 #else /* HAVE_FMA */
Chris@19 115
Chris@19 116 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 4 -dif -name hc2cb_4 -include hc2cb.h */
Chris@19 117
Chris@19 118 /*
Chris@19 119 * This function contains 22 FP additions, 12 FP multiplications,
Chris@19 120 * (or, 16 additions, 6 multiplications, 6 fused multiply/add),
Chris@19 121 * 13 stack variables, 0 constants, and 16 memory accesses
Chris@19 122 */
Chris@19 123 #include "hc2cb.h"
Chris@19 124
Chris@19 125 static void hc2cb_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 126 {
Chris@19 127 {
Chris@19 128 INT m;
Chris@19 129 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 130 E T3, Ti, Tc, Tn, T6, Tm, Tf, Tj;
Chris@19 131 {
Chris@19 132 E T1, T2, Ta, Tb;
Chris@19 133 T1 = Rp[0];
Chris@19 134 T2 = Rm[WS(rs, 1)];
Chris@19 135 T3 = T1 + T2;
Chris@19 136 Ti = T1 - T2;
Chris@19 137 Ta = Ip[0];
Chris@19 138 Tb = Im[WS(rs, 1)];
Chris@19 139 Tc = Ta - Tb;
Chris@19 140 Tn = Ta + Tb;
Chris@19 141 }
Chris@19 142 {
Chris@19 143 E T4, T5, Td, Te;
Chris@19 144 T4 = Rp[WS(rs, 1)];
Chris@19 145 T5 = Rm[0];
Chris@19 146 T6 = T4 + T5;
Chris@19 147 Tm = T4 - T5;
Chris@19 148 Td = Ip[WS(rs, 1)];
Chris@19 149 Te = Im[0];
Chris@19 150 Tf = Td - Te;
Chris@19 151 Tj = Td + Te;
Chris@19 152 }
Chris@19 153 Rp[0] = T3 + T6;
Chris@19 154 Rm[0] = Tc + Tf;
Chris@19 155 {
Chris@19 156 E T8, Tg, T7, T9;
Chris@19 157 T8 = T3 - T6;
Chris@19 158 Tg = Tc - Tf;
Chris@19 159 T7 = W[2];
Chris@19 160 T9 = W[3];
Chris@19 161 Rp[WS(rs, 1)] = FNMS(T9, Tg, T7 * T8);
Chris@19 162 Rm[WS(rs, 1)] = FMA(T9, T8, T7 * Tg);
Chris@19 163 }
Chris@19 164 {
Chris@19 165 E Tk, To, Th, Tl;
Chris@19 166 Tk = Ti - Tj;
Chris@19 167 To = Tm + Tn;
Chris@19 168 Th = W[0];
Chris@19 169 Tl = W[1];
Chris@19 170 Ip[0] = FNMS(Tl, To, Th * Tk);
Chris@19 171 Im[0] = FMA(Th, To, Tl * Tk);
Chris@19 172 }
Chris@19 173 {
Chris@19 174 E Tq, Ts, Tp, Tr;
Chris@19 175 Tq = Ti + Tj;
Chris@19 176 Ts = Tn - Tm;
Chris@19 177 Tp = W[4];
Chris@19 178 Tr = W[5];
Chris@19 179 Ip[WS(rs, 1)] = FNMS(Tr, Ts, Tp * Tq);
Chris@19 180 Im[WS(rs, 1)] = FMA(Tp, Ts, Tr * Tq);
Chris@19 181 }
Chris@19 182 }
Chris@19 183 }
Chris@19 184 }
Chris@19 185
Chris@19 186 static const tw_instr twinstr[] = {
Chris@19 187 {TW_FULL, 1, 4},
Chris@19 188 {TW_NEXT, 1, 0}
Chris@19 189 };
Chris@19 190
Chris@19 191 static const hc2c_desc desc = { 4, "hc2cb_4", twinstr, &GENUS, {16, 6, 6, 0} };
Chris@19 192
Chris@19 193 void X(codelet_hc2cb_4) (planner *p) {
Chris@19 194 X(khc2c_register) (p, hc2cb_4, &desc, HC2C_VIA_RDFT);
Chris@19 195 }
Chris@19 196 #endif /* HAVE_FMA */