annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hc2cb_10.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:37 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include hc2cb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 102 FP additions, 72 FP multiplications,
Chris@19 32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
Chris@19 33 * 71 stack variables, 4 constants, and 40 memory accesses
Chris@19 34 */
Chris@19 35 #include "hc2cb.h"
Chris@19 36
Chris@19 37 static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 43 {
Chris@19 44 INT m;
Chris@19 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@19 46 E T21, T1Y, T1X;
Chris@19 47 {
Chris@19 48 E T1B, TH, T1g, T3, T1V, T1x, T1G, T1E, TM, TK, T11, TB, T7, T1m, T1J;
Chris@19 49 E TO, Th, T1h, T6, T8, TF, TG, T1i, T9;
Chris@19 50 TF = Ip[0];
Chris@19 51 TG = Im[WS(rs, 4)];
Chris@19 52 {
Chris@19 53 E T1u, Tp, Tu, T1s, Tz, T1v, Ts, Tv;
Chris@19 54 {
Chris@19 55 E Tx, Ty, Tn, To, Tq, Tr;
Chris@19 56 Tn = Ip[WS(rs, 4)];
Chris@19 57 To = Im[0];
Chris@19 58 Tx = Ip[WS(rs, 3)];
Chris@19 59 T1B = TF + TG;
Chris@19 60 TH = TF - TG;
Chris@19 61 T1u = Tn + To;
Chris@19 62 Tp = Tn - To;
Chris@19 63 Ty = Im[WS(rs, 1)];
Chris@19 64 Tq = Ip[WS(rs, 1)];
Chris@19 65 Tr = Im[WS(rs, 3)];
Chris@19 66 Tu = Ip[WS(rs, 2)];
Chris@19 67 T1s = Tx + Ty;
Chris@19 68 Tz = Tx - Ty;
Chris@19 69 T1v = Tq + Tr;
Chris@19 70 Ts = Tq - Tr;
Chris@19 71 Tv = Im[WS(rs, 2)];
Chris@19 72 }
Chris@19 73 {
Chris@19 74 E T1, T1w, T1D, TJ, Tt, T1r, Tw, T2;
Chris@19 75 T1 = Rp[0];
Chris@19 76 T1w = T1u + T1v;
Chris@19 77 T1D = T1u - T1v;
Chris@19 78 TJ = Tp + Ts;
Chris@19 79 Tt = Tp - Ts;
Chris@19 80 T1r = Tu + Tv;
Chris@19 81 Tw = Tu - Tv;
Chris@19 82 T2 = Rm[WS(rs, 4)];
Chris@19 83 {
Chris@19 84 E Tb, Tc, Te, Tf;
Chris@19 85 Tb = Rp[WS(rs, 4)];
Chris@19 86 {
Chris@19 87 E T1t, T1C, TI, TA;
Chris@19 88 T1t = T1r + T1s;
Chris@19 89 T1C = T1r - T1s;
Chris@19 90 TI = Tw + Tz;
Chris@19 91 TA = Tw - Tz;
Chris@19 92 T1g = T1 - T2;
Chris@19 93 T3 = T1 + T2;
Chris@19 94 T1V = FNMS(KP618033988, T1t, T1w);
Chris@19 95 T1x = FMA(KP618033988, T1w, T1t);
Chris@19 96 T1G = T1C - T1D;
Chris@19 97 T1E = T1C + T1D;
Chris@19 98 TM = TI - TJ;
Chris@19 99 TK = TI + TJ;
Chris@19 100 T11 = FMA(KP618033988, Tt, TA);
Chris@19 101 TB = FNMS(KP618033988, TA, Tt);
Chris@19 102 Tc = Rm[0];
Chris@19 103 }
Chris@19 104 Te = Rm[WS(rs, 3)];
Chris@19 105 Tf = Rp[WS(rs, 1)];
Chris@19 106 {
Chris@19 107 E T4, T1k, Td, T1l, Tg, T5;
Chris@19 108 T4 = Rp[WS(rs, 2)];
Chris@19 109 T1k = Tb - Tc;
Chris@19 110 Td = Tb + Tc;
Chris@19 111 T1l = Te - Tf;
Chris@19 112 Tg = Te + Tf;
Chris@19 113 T5 = Rm[WS(rs, 2)];
Chris@19 114 T7 = Rm[WS(rs, 1)];
Chris@19 115 T1m = T1k + T1l;
Chris@19 116 T1J = T1k - T1l;
Chris@19 117 TO = Td - Tg;
Chris@19 118 Th = Td + Tg;
Chris@19 119 T1h = T4 - T5;
Chris@19 120 T6 = T4 + T5;
Chris@19 121 T8 = Rp[WS(rs, 3)];
Chris@19 122 }
Chris@19 123 }
Chris@19 124 }
Chris@19 125 }
Chris@19 126 Rm[0] = TH + TK;
Chris@19 127 T1i = T7 - T8;
Chris@19 128 T9 = T7 + T8;
Chris@19 129 {
Chris@19 130 E T2d, T1F, T29, T1I, TP, T2c, T1p, Tl, T1o, Tk, T2b, T2e, T17, T14, T13;
Chris@19 131 T2d = T1B + T1E;
Chris@19 132 T1F = FNMS(KP250000000, T1E, T1B);
Chris@19 133 {
Chris@19 134 E T1j, Ta, T1n, Ti, T2a;
Chris@19 135 T29 = W[8];
Chris@19 136 T1I = T1h - T1i;
Chris@19 137 T1j = T1h + T1i;
Chris@19 138 TP = T6 - T9;
Chris@19 139 Ta = T6 + T9;
Chris@19 140 T2c = W[9];
Chris@19 141 T1p = T1j - T1m;
Chris@19 142 T1n = T1j + T1m;
Chris@19 143 Tl = Ta - Th;
Chris@19 144 Ti = Ta + Th;
Chris@19 145 T1o = FNMS(KP250000000, T1n, T1g);
Chris@19 146 T2a = T1g + T1n;
Chris@19 147 Rp[0] = T3 + Ti;
Chris@19 148 Tk = FNMS(KP250000000, Ti, T3);
Chris@19 149 T2b = T29 * T2a;
Chris@19 150 T2e = T2c * T2a;
Chris@19 151 }
Chris@19 152 {
Chris@19 153 E T16, TQ, T10, Tm, TL;
Chris@19 154 T16 = FMA(KP618033988, TO, TP);
Chris@19 155 TQ = FNMS(KP618033988, TP, TO);
Chris@19 156 Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b);
Chris@19 157 Im[WS(rs, 2)] = FMA(T29, T2d, T2e);
Chris@19 158 T10 = FMA(KP559016994, Tl, Tk);
Chris@19 159 Tm = FNMS(KP559016994, Tl, Tk);
Chris@19 160 TL = FNMS(KP250000000, TK, TH);
Chris@19 161 {
Chris@19 162 E TE, TU, T12, TR, TX, T1d, T1c, T19, TD, T1e, T1b, TW, TT;
Chris@19 163 {
Chris@19 164 E TC, T15, T1a, TS, Tj, TN;
Chris@19 165 TE = W[3];
Chris@19 166 TC = FMA(KP951056516, TB, Tm);
Chris@19 167 TU = FNMS(KP951056516, TB, Tm);
Chris@19 168 TN = FNMS(KP559016994, TM, TL);
Chris@19 169 T15 = FMA(KP559016994, TM, TL);
Chris@19 170 T12 = FMA(KP951056516, T11, T10);
Chris@19 171 T1a = FNMS(KP951056516, T11, T10);
Chris@19 172 TS = TE * TC;
Chris@19 173 TR = FNMS(KP951056516, TQ, TN);
Chris@19 174 TX = FMA(KP951056516, TQ, TN);
Chris@19 175 Tj = W[2];
Chris@19 176 T1d = FMA(KP951056516, T16, T15);
Chris@19 177 T17 = FNMS(KP951056516, T16, T15);
Chris@19 178 T1c = W[11];
Chris@19 179 T19 = W[10];
Chris@19 180 Rm[WS(rs, 1)] = FMA(Tj, TR, TS);
Chris@19 181 TD = Tj * TC;
Chris@19 182 T1e = T1c * T1a;
Chris@19 183 T1b = T19 * T1a;
Chris@19 184 }
Chris@19 185 Rp[WS(rs, 1)] = FNMS(TE, TR, TD);
Chris@19 186 Rm[WS(rs, 3)] = FMA(T19, T1d, T1e);
Chris@19 187 Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b);
Chris@19 188 TW = W[15];
Chris@19 189 TT = W[14];
Chris@19 190 {
Chris@19 191 E TZ, T18, TY, TV;
Chris@19 192 T14 = W[7];
Chris@19 193 TY = TW * TU;
Chris@19 194 TV = TT * TU;
Chris@19 195 TZ = W[6];
Chris@19 196 T18 = T14 * T12;
Chris@19 197 Rm[WS(rs, 4)] = FMA(TT, TX, TY);
Chris@19 198 Rp[WS(rs, 4)] = FNMS(TW, TX, TV);
Chris@19 199 T13 = TZ * T12;
Chris@19 200 Rm[WS(rs, 2)] = FMA(TZ, T17, T18);
Chris@19 201 }
Chris@19 202 }
Chris@19 203 }
Chris@19 204 {
Chris@19 205 E T20, T1K, T1q, T1U;
Chris@19 206 T20 = FNMS(KP618033988, T1I, T1J);
Chris@19 207 T1K = FMA(KP618033988, T1J, T1I);
Chris@19 208 Rp[WS(rs, 2)] = FNMS(T14, T17, T13);
Chris@19 209 T1q = FMA(KP559016994, T1p, T1o);
Chris@19 210 T1U = FNMS(KP559016994, T1p, T1o);
Chris@19 211 {
Chris@19 212 E T1A, T1O, T1W, T1R, T1L, T27, T26, T23, T1z, T28, T25, T1Q, T1N;
Chris@19 213 {
Chris@19 214 E T1y, T1Z, T24, T1M, T1f, T1H;
Chris@19 215 T1A = W[1];
Chris@19 216 T1O = FMA(KP951056516, T1x, T1q);
Chris@19 217 T1y = FNMS(KP951056516, T1x, T1q);
Chris@19 218 T1Z = FNMS(KP559016994, T1G, T1F);
Chris@19 219 T1H = FMA(KP559016994, T1G, T1F);
Chris@19 220 T24 = FMA(KP951056516, T1V, T1U);
Chris@19 221 T1W = FNMS(KP951056516, T1V, T1U);
Chris@19 222 T1M = T1A * T1y;
Chris@19 223 T1R = FNMS(KP951056516, T1K, T1H);
Chris@19 224 T1L = FMA(KP951056516, T1K, T1H);
Chris@19 225 T1f = W[0];
Chris@19 226 T21 = FMA(KP951056516, T20, T1Z);
Chris@19 227 T27 = FNMS(KP951056516, T20, T1Z);
Chris@19 228 T26 = W[13];
Chris@19 229 T23 = W[12];
Chris@19 230 Im[0] = FMA(T1f, T1L, T1M);
Chris@19 231 T1z = T1f * T1y;
Chris@19 232 T28 = T26 * T24;
Chris@19 233 T25 = T23 * T24;
Chris@19 234 }
Chris@19 235 Ip[0] = FNMS(T1A, T1L, T1z);
Chris@19 236 Im[WS(rs, 3)] = FMA(T23, T27, T28);
Chris@19 237 Ip[WS(rs, 3)] = FNMS(T26, T27, T25);
Chris@19 238 T1Q = W[17];
Chris@19 239 T1N = W[16];
Chris@19 240 {
Chris@19 241 E T1T, T22, T1S, T1P;
Chris@19 242 T1Y = W[5];
Chris@19 243 T1S = T1Q * T1O;
Chris@19 244 T1P = T1N * T1O;
Chris@19 245 T1T = W[4];
Chris@19 246 T22 = T1Y * T1W;
Chris@19 247 Im[WS(rs, 4)] = FMA(T1N, T1R, T1S);
Chris@19 248 Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P);
Chris@19 249 T1X = T1T * T1W;
Chris@19 250 Im[WS(rs, 1)] = FMA(T1T, T21, T22);
Chris@19 251 }
Chris@19 252 }
Chris@19 253 }
Chris@19 254 }
Chris@19 255 }
Chris@19 256 Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X);
Chris@19 257 }
Chris@19 258 }
Chris@19 259 }
Chris@19 260
Chris@19 261 static const tw_instr twinstr[] = {
Chris@19 262 {TW_FULL, 1, 10},
Chris@19 263 {TW_NEXT, 1, 0}
Chris@19 264 };
Chris@19 265
Chris@19 266 static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {48, 18, 54, 0} };
Chris@19 267
Chris@19 268 void X(codelet_hc2cb_10) (planner *p) {
Chris@19 269 X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
Chris@19 270 }
Chris@19 271 #else /* HAVE_FMA */
Chris@19 272
Chris@19 273 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include hc2cb.h */
Chris@19 274
Chris@19 275 /*
Chris@19 276 * This function contains 102 FP additions, 60 FP multiplications,
Chris@19 277 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
Chris@19 278 * 39 stack variables, 4 constants, and 40 memory accesses
Chris@19 279 */
Chris@19 280 #include "hc2cb.h"
Chris@19 281
Chris@19 282 static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 283 {
Chris@19 284 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 285 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 286 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 287 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 288 {
Chris@19 289 INT m;
Chris@19 290 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@19 291 E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w;
Chris@19 292 E T1v, T1p, T1E, TM, TO;
Chris@19 293 {
Chris@19 294 E T1, T2, TH, TI;
Chris@19 295 T1 = Rp[0];
Chris@19 296 T2 = Rm[WS(rs, 4)];
Chris@19 297 T3 = T1 + T2;
Chris@19 298 T18 = T1 - T2;
Chris@19 299 TH = Ip[0];
Chris@19 300 TI = Im[WS(rs, 4)];
Chris@19 301 TJ = TH - TI;
Chris@19 302 T1i = TH + TI;
Chris@19 303 }
Chris@19 304 {
Chris@19 305 E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
Chris@19 306 {
Chris@19 307 E T4, T5, Te, Tf;
Chris@19 308 T4 = Rp[WS(rs, 2)];
Chris@19 309 T5 = Rm[WS(rs, 2)];
Chris@19 310 T6 = T4 + T5;
Chris@19 311 T19 = T4 - T5;
Chris@19 312 Te = Rm[WS(rs, 3)];
Chris@19 313 Tf = Rp[WS(rs, 1)];
Chris@19 314 Tg = Te + Tf;
Chris@19 315 T1d = Te - Tf;
Chris@19 316 }
Chris@19 317 {
Chris@19 318 E T7, T8, Tb, Tc;
Chris@19 319 T7 = Rm[WS(rs, 1)];
Chris@19 320 T8 = Rp[WS(rs, 3)];
Chris@19 321 T9 = T7 + T8;
Chris@19 322 T1a = T7 - T8;
Chris@19 323 Tb = Rp[WS(rs, 4)];
Chris@19 324 Tc = Rm[0];
Chris@19 325 Td = Tb + Tc;
Chris@19 326 T1c = Tb - Tc;
Chris@19 327 }
Chris@19 328 TE = T6 - T9;
Chris@19 329 TF = Td - Tg;
Chris@19 330 T1B = T1c - T1d;
Chris@19 331 T1A = T19 - T1a;
Chris@19 332 {
Chris@19 333 E T1b, T1e, Ta, Th;
Chris@19 334 T1b = T19 + T1a;
Chris@19 335 T1e = T1c + T1d;
Chris@19 336 T1f = T1b + T1e;
Chris@19 337 T1t = KP559016994 * (T1b - T1e);
Chris@19 338 Ta = T6 + T9;
Chris@19 339 Th = Td + Tg;
Chris@19 340 Ti = Ta + Th;
Chris@19 341 Tl = KP559016994 * (Ta - Th);
Chris@19 342 }
Chris@19 343 }
Chris@19 344 {
Chris@19 345 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
Chris@19 346 {
Chris@19 347 E Tn, To, Tx, Ty;
Chris@19 348 Tn = Ip[WS(rs, 2)];
Chris@19 349 To = Im[WS(rs, 2)];
Chris@19 350 Tp = Tn - To;
Chris@19 351 T1j = Tn + To;
Chris@19 352 Tx = Ip[WS(rs, 1)];
Chris@19 353 Ty = Im[WS(rs, 3)];
Chris@19 354 Tz = Tx - Ty;
Chris@19 355 T1n = Tx + Ty;
Chris@19 356 }
Chris@19 357 {
Chris@19 358 E Tq, Tr, Tu, Tv;
Chris@19 359 Tq = Ip[WS(rs, 3)];
Chris@19 360 Tr = Im[WS(rs, 1)];
Chris@19 361 Ts = Tq - Tr;
Chris@19 362 T1k = Tq + Tr;
Chris@19 363 Tu = Ip[WS(rs, 4)];
Chris@19 364 Tv = Im[0];
Chris@19 365 Tw = Tu - Tv;
Chris@19 366 T1m = Tu + Tv;
Chris@19 367 }
Chris@19 368 Tt = Tp - Ts;
Chris@19 369 TA = Tw - Tz;
Chris@19 370 T1w = T1m + T1n;
Chris@19 371 T1v = T1j + T1k;
Chris@19 372 {
Chris@19 373 E T1l, T1o, TK, TL;
Chris@19 374 T1l = T1j - T1k;
Chris@19 375 T1o = T1m - T1n;
Chris@19 376 T1p = T1l + T1o;
Chris@19 377 T1E = KP559016994 * (T1l - T1o);
Chris@19 378 TK = Tp + Ts;
Chris@19 379 TL = Tw + Tz;
Chris@19 380 TM = TK + TL;
Chris@19 381 TO = KP559016994 * (TK - TL);
Chris@19 382 }
Chris@19 383 }
Chris@19 384 Rp[0] = T3 + Ti;
Chris@19 385 Rm[0] = TJ + TM;
Chris@19 386 {
Chris@19 387 E T1g, T1q, T17, T1h;
Chris@19 388 T1g = T18 + T1f;
Chris@19 389 T1q = T1i + T1p;
Chris@19 390 T17 = W[8];
Chris@19 391 T1h = W[9];
Chris@19 392 Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g);
Chris@19 393 Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q);
Chris@19 394 }
Chris@19 395 {
Chris@19 396 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
Chris@19 397 TB = FNMS(KP951056516, TA, KP587785252 * Tt);
Chris@19 398 TG = FNMS(KP951056516, TF, KP587785252 * TE);
Chris@19 399 T11 = FMA(KP951056516, TE, KP587785252 * TF);
Chris@19 400 TX = FMA(KP951056516, Tt, KP587785252 * TA);
Chris@19 401 TN = FNMS(KP250000000, TM, TJ);
Chris@19 402 TP = TN - TO;
Chris@19 403 T10 = TO + TN;
Chris@19 404 Tk = FNMS(KP250000000, Ti, T3);
Chris@19 405 Tm = Tk - Tl;
Chris@19 406 TW = Tl + Tk;
Chris@19 407 {
Chris@19 408 E TC, TQ, Tj, TD;
Chris@19 409 TC = Tm - TB;
Chris@19 410 TQ = TG + TP;
Chris@19 411 Tj = W[2];
Chris@19 412 TD = W[3];
Chris@19 413 Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC);
Chris@19 414 Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ);
Chris@19 415 }
Chris@19 416 {
Chris@19 417 E T14, T16, T13, T15;
Chris@19 418 T14 = TW - TX;
Chris@19 419 T16 = T11 + T10;
Chris@19 420 T13 = W[10];
Chris@19 421 T15 = W[11];
Chris@19 422 Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14);
Chris@19 423 Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16);
Chris@19 424 }
Chris@19 425 {
Chris@19 426 E TS, TU, TR, TT;
Chris@19 427 TS = Tm + TB;
Chris@19 428 TU = TP - TG;
Chris@19 429 TR = W[14];
Chris@19 430 TT = W[15];
Chris@19 431 Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS);
Chris@19 432 Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU);
Chris@19 433 }
Chris@19 434 {
Chris@19 435 E TY, T12, TV, TZ;
Chris@19 436 TY = TW + TX;
Chris@19 437 T12 = T10 - T11;
Chris@19 438 TV = W[6];
Chris@19 439 TZ = W[7];
Chris@19 440 Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY);
Chris@19 441 Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12);
Chris@19 442 }
Chris@19 443 }
Chris@19 444 {
Chris@19 445 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
Chris@19 446 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
Chris@19 447 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
Chris@19 448 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
Chris@19 449 T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
Chris@19 450 T1D = FNMS(KP250000000, T1p, T1i);
Chris@19 451 T1F = T1D - T1E;
Chris@19 452 T1R = T1E + T1D;
Chris@19 453 T1s = FNMS(KP250000000, T1f, T18);
Chris@19 454 T1u = T1s - T1t;
Chris@19 455 T1M = T1t + T1s;
Chris@19 456 {
Chris@19 457 E T1y, T1G, T1r, T1z;
Chris@19 458 T1y = T1u - T1x;
Chris@19 459 T1G = T1C + T1F;
Chris@19 460 T1r = W[12];
Chris@19 461 T1z = W[13];
Chris@19 462 Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y);
Chris@19 463 Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y);
Chris@19 464 }
Chris@19 465 {
Chris@19 466 E T1U, T1W, T1T, T1V;
Chris@19 467 T1U = T1M + T1N;
Chris@19 468 T1W = T1R - T1Q;
Chris@19 469 T1T = W[16];
Chris@19 470 T1V = W[17];
Chris@19 471 Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U);
Chris@19 472 Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U);
Chris@19 473 }
Chris@19 474 {
Chris@19 475 E T1I, T1K, T1H, T1J;
Chris@19 476 T1I = T1u + T1x;
Chris@19 477 T1K = T1F - T1C;
Chris@19 478 T1H = W[4];
Chris@19 479 T1J = W[5];
Chris@19 480 Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I);
Chris@19 481 Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I);
Chris@19 482 }
Chris@19 483 {
Chris@19 484 E T1O, T1S, T1L, T1P;
Chris@19 485 T1O = T1M - T1N;
Chris@19 486 T1S = T1Q + T1R;
Chris@19 487 T1L = W[0];
Chris@19 488 T1P = W[1];
Chris@19 489 Ip[0] = FNMS(T1P, T1S, T1L * T1O);
Chris@19 490 Im[0] = FMA(T1L, T1S, T1P * T1O);
Chris@19 491 }
Chris@19 492 }
Chris@19 493 }
Chris@19 494 }
Chris@19 495 }
Chris@19 496
Chris@19 497 static const tw_instr twinstr[] = {
Chris@19 498 {TW_FULL, 1, 10},
Chris@19 499 {TW_NEXT, 1, 0}
Chris@19 500 };
Chris@19 501
Chris@19 502 static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {72, 30, 30, 0} };
Chris@19 503
Chris@19 504 void X(codelet_hc2cb_10) (planner *p) {
Chris@19 505 X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
Chris@19 506 }
Chris@19 507 #endif /* HAVE_FMA */