annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_7.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:25 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 72 FP additions, 66 FP multiplications,
Chris@19 32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
Chris@19 33 * 67 stack variables, 6 constants, and 28 memory accesses
Chris@19 34 */
Chris@19 35 #include "hb.h"
Chris@19 36
Chris@19 37 static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@19 40 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@19 41 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@19 42 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@19 43 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@19 44 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@19 45 {
Chris@19 46 INT m;
Chris@19 47 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@19 48 E T1q, T1p, T1t, T1r, T1s, T1u;
Chris@19 49 {
Chris@19 50 E T1, T4, TC, T7, TB, Tt, TD, Ta, TA, T1l, TZ, T1b, Th, Tw, Td;
Chris@19 51 E TP, Ti, Tj, Tl, Tm, T8, T9, T1a;
Chris@19 52 T1 = cr[0];
Chris@19 53 {
Chris@19 54 E T2, T3, T5, T6;
Chris@19 55 T2 = cr[WS(rs, 1)];
Chris@19 56 T3 = ci[0];
Chris@19 57 T5 = cr[WS(rs, 2)];
Chris@19 58 T6 = ci[WS(rs, 1)];
Chris@19 59 T8 = cr[WS(rs, 3)];
Chris@19 60 T4 = T2 + T3;
Chris@19 61 TC = T2 - T3;
Chris@19 62 T7 = T5 + T6;
Chris@19 63 TB = T5 - T6;
Chris@19 64 T9 = ci[WS(rs, 2)];
Chris@19 65 }
Chris@19 66 Tt = ci[WS(rs, 6)];
Chris@19 67 TD = FNMS(KP554958132, TC, TB);
Chris@19 68 T1a = FNMS(KP356895867, T7, T4);
Chris@19 69 Ta = T8 + T9;
Chris@19 70 TA = T8 - T9;
Chris@19 71 {
Chris@19 72 E Tf, Tg, Tc, TO;
Chris@19 73 Tf = ci[WS(rs, 3)];
Chris@19 74 Tg = cr[WS(rs, 4)];
Chris@19 75 T1l = FMA(KP554958132, TA, TC);
Chris@19 76 TZ = FMA(KP554958132, TB, TA);
Chris@19 77 Tc = FNMS(KP356895867, Ta, T7);
Chris@19 78 TO = FNMS(KP356895867, T4, Ta);
Chris@19 79 T1b = FNMS(KP692021471, T1a, Ta);
Chris@19 80 Th = Tf + Tg;
Chris@19 81 Tw = Tf - Tg;
Chris@19 82 Td = FNMS(KP692021471, Tc, T4);
Chris@19 83 TP = FNMS(KP692021471, TO, T7);
Chris@19 84 }
Chris@19 85 Ti = ci[WS(rs, 4)];
Chris@19 86 Tj = cr[WS(rs, 5)];
Chris@19 87 Tl = ci[WS(rs, 5)];
Chris@19 88 Tm = cr[WS(rs, 6)];
Chris@19 89 {
Chris@19 90 E Ty, TS, TX, T1j, T1e, Tp, Tk, Tv;
Chris@19 91 cr[0] = T1 + T4 + T7 + Ta;
Chris@19 92 Tk = Ti + Tj;
Chris@19 93 Tv = Ti - Tj;
Chris@19 94 {
Chris@19 95 E Tn, Tu, Tx, TR;
Chris@19 96 Tn = Tl + Tm;
Chris@19 97 Tu = Tl - Tm;
Chris@19 98 Tx = FNMS(KP356895867, Tw, Tv);
Chris@19 99 TR = FMA(KP554958132, Tk, Th);
Chris@19 100 {
Chris@19 101 E TW, T1i, T1d, To;
Chris@19 102 TW = FNMS(KP356895867, Tu, Tw);
Chris@19 103 T1i = FNMS(KP356895867, Tv, Tu);
Chris@19 104 T1d = FMA(KP554958132, Th, Tn);
Chris@19 105 To = FNMS(KP554958132, Tn, Tk);
Chris@19 106 Ty = FNMS(KP692021471, Tx, Tu);
Chris@19 107 TS = FNMS(KP801937735, TR, Tn);
Chris@19 108 TX = FNMS(KP692021471, TW, Tv);
Chris@19 109 T1j = FNMS(KP692021471, T1i, Tw);
Chris@19 110 T1e = FMA(KP801937735, T1d, Tk);
Chris@19 111 Tp = FNMS(KP801937735, To, Th);
Chris@19 112 ci[0] = Tt + Tu + Tv + Tw;
Chris@19 113 }
Chris@19 114 }
Chris@19 115 {
Chris@19 116 E TL, TH, TK, TJ, TM, Te, Tz, TE;
Chris@19 117 Te = FNMS(KP900968867, Td, T1);
Chris@19 118 Tz = FNMS(KP900968867, Ty, Tt);
Chris@19 119 TE = FNMS(KP801937735, TD, TA);
Chris@19 120 {
Chris@19 121 E Tb, TI, Tq, TF, Ts, Tr, TG;
Chris@19 122 Tb = W[4];
Chris@19 123 TI = FMA(KP974927912, Tp, Te);
Chris@19 124 Tq = FNMS(KP974927912, Tp, Te);
Chris@19 125 TL = FNMS(KP974927912, TE, Tz);
Chris@19 126 TF = FMA(KP974927912, TE, Tz);
Chris@19 127 Ts = W[5];
Chris@19 128 Tr = Tb * Tq;
Chris@19 129 TH = W[6];
Chris@19 130 TK = W[7];
Chris@19 131 TG = Ts * Tq;
Chris@19 132 cr[WS(rs, 3)] = FNMS(Ts, TF, Tr);
Chris@19 133 TJ = TH * TI;
Chris@19 134 TM = TK * TI;
Chris@19 135 ci[WS(rs, 3)] = FMA(Tb, TF, TG);
Chris@19 136 }
Chris@19 137 {
Chris@19 138 E T14, T13, T17, T15, T16;
Chris@19 139 {
Chris@19 140 E TY, TT, T10, TQ;
Chris@19 141 TQ = FNMS(KP900968867, TP, T1);
Chris@19 142 cr[WS(rs, 4)] = FNMS(TK, TL, TJ);
Chris@19 143 ci[WS(rs, 4)] = FMA(TH, TL, TM);
Chris@19 144 TY = FNMS(KP900968867, TX, Tt);
Chris@19 145 TT = FNMS(KP974927912, TS, TQ);
Chris@19 146 T14 = FMA(KP974927912, TS, TQ);
Chris@19 147 T10 = FNMS(KP801937735, TZ, TC);
Chris@19 148 {
Chris@19 149 E TN, TV, T11, TU, T12;
Chris@19 150 TN = W[2];
Chris@19 151 TV = W[3];
Chris@19 152 T13 = W[8];
Chris@19 153 T11 = FMA(KP974927912, T10, TY);
Chris@19 154 T17 = FNMS(KP974927912, T10, TY);
Chris@19 155 TU = TN * TT;
Chris@19 156 T12 = TV * TT;
Chris@19 157 T15 = T13 * T14;
Chris@19 158 T16 = W[9];
Chris@19 159 cr[WS(rs, 2)] = FNMS(TV, T11, TU);
Chris@19 160 ci[WS(rs, 2)] = FMA(TN, T11, T12);
Chris@19 161 }
Chris@19 162 }
Chris@19 163 {
Chris@19 164 E T1k, T1f, T1m, T1c, T18;
Chris@19 165 T1c = FNMS(KP900968867, T1b, T1);
Chris@19 166 cr[WS(rs, 5)] = FNMS(T16, T17, T15);
Chris@19 167 T18 = T16 * T14;
Chris@19 168 T1k = FNMS(KP900968867, T1j, Tt);
Chris@19 169 T1f = FNMS(KP974927912, T1e, T1c);
Chris@19 170 T1q = FMA(KP974927912, T1e, T1c);
Chris@19 171 ci[WS(rs, 5)] = FMA(T13, T17, T18);
Chris@19 172 T1m = FMA(KP801937735, T1l, TB);
Chris@19 173 {
Chris@19 174 E T19, T1h, T1n, T1g, T1o;
Chris@19 175 T19 = W[0];
Chris@19 176 T1h = W[1];
Chris@19 177 T1p = W[10];
Chris@19 178 T1t = FNMS(KP974927912, T1m, T1k);
Chris@19 179 T1n = FMA(KP974927912, T1m, T1k);
Chris@19 180 T1g = T19 * T1f;
Chris@19 181 T1o = T1h * T1f;
Chris@19 182 T1r = T1p * T1q;
Chris@19 183 T1s = W[11];
Chris@19 184 cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g);
Chris@19 185 ci[WS(rs, 1)] = FMA(T19, T1n, T1o);
Chris@19 186 }
Chris@19 187 }
Chris@19 188 }
Chris@19 189 }
Chris@19 190 }
Chris@19 191 }
Chris@19 192 cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r);
Chris@19 193 T1u = T1s * T1q;
Chris@19 194 ci[WS(rs, 6)] = FMA(T1p, T1t, T1u);
Chris@19 195 }
Chris@19 196 }
Chris@19 197 }
Chris@19 198
Chris@19 199 static const tw_instr twinstr[] = {
Chris@19 200 {TW_FULL, 1, 7},
Chris@19 201 {TW_NEXT, 1, 0}
Chris@19 202 };
Chris@19 203
Chris@19 204 static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {18, 12, 54, 0} };
Chris@19 205
Chris@19 206 void X(codelet_hb_7) (planner *p) {
Chris@19 207 X(khc2hc_register) (p, hb_7, &desc);
Chris@19 208 }
Chris@19 209 #else /* HAVE_FMA */
Chris@19 210
Chris@19 211 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include hb.h */
Chris@19 212
Chris@19 213 /*
Chris@19 214 * This function contains 72 FP additions, 60 FP multiplications,
Chris@19 215 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
Chris@19 216 * 36 stack variables, 6 constants, and 28 memory accesses
Chris@19 217 */
Chris@19 218 #include "hb.h"
Chris@19 219
Chris@19 220 static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 221 {
Chris@19 222 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@19 223 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@19 224 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@19 225 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@19 226 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@19 227 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@19 228 {
Chris@19 229 INT m;
Chris@19 230 for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@19 231 E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq;
Chris@19 232 E TF, TR, TU, TJ, Tt;
Chris@19 233 {
Chris@19 234 E Tu, Tw, Tv, T2, T3;
Chris@19 235 T1 = cr[0];
Chris@19 236 T2 = cr[WS(rs, 1)];
Chris@19 237 T3 = ci[0];
Chris@19 238 T4 = T2 + T3;
Chris@19 239 Tu = T2 - T3;
Chris@19 240 {
Chris@19 241 E T5, T6, T8, T9;
Chris@19 242 T5 = cr[WS(rs, 2)];
Chris@19 243 T6 = ci[WS(rs, 1)];
Chris@19 244 T7 = T5 + T6;
Chris@19 245 Tw = T5 - T6;
Chris@19 246 T8 = cr[WS(rs, 3)];
Chris@19 247 T9 = ci[WS(rs, 2)];
Chris@19 248 Ta = T8 + T9;
Chris@19 249 Tv = T8 - T9;
Chris@19 250 }
Chris@19 251 Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw);
Chris@19 252 TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv);
Chris@19 253 TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw);
Chris@19 254 TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
Chris@19 255 TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
Chris@19 256 Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
Chris@19 257 }
Chris@19 258 {
Chris@19 259 E Tp, Tn, To, Tc, Td;
Chris@19 260 Tb = ci[WS(rs, 6)];
Chris@19 261 Tc = ci[WS(rs, 5)];
Chris@19 262 Td = cr[WS(rs, 6)];
Chris@19 263 Te = Tc - Td;
Chris@19 264 Tp = Tc + Td;
Chris@19 265 {
Chris@19 266 E Tf, Tg, Ti, Tj;
Chris@19 267 Tf = ci[WS(rs, 4)];
Chris@19 268 Tg = cr[WS(rs, 5)];
Chris@19 269 Th = Tf - Tg;
Chris@19 270 Tn = Tf + Tg;
Chris@19 271 Ti = ci[WS(rs, 3)];
Chris@19 272 Tj = cr[WS(rs, 4)];
Chris@19 273 Tk = Ti - Tj;
Chris@19 274 To = Ti + Tj;
Chris@19 275 }
Chris@19 276 Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp);
Chris@19 277 TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To);
Chris@19 278 TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp);
Chris@19 279 TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te);
Chris@19 280 TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th);
Chris@19 281 Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te);
Chris@19 282 }
Chris@19 283 cr[0] = T1 + T4 + T7 + Ta;
Chris@19 284 ci[0] = Tb + Te + Th + Tk;
Chris@19 285 {
Chris@19 286 E Tr, Ty, Tl, Ts;
Chris@19 287 Tr = Tm - Tq;
Chris@19 288 Ty = Tt - Tx;
Chris@19 289 Tl = W[6];
Chris@19 290 Ts = W[7];
Chris@19 291 cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr);
Chris@19 292 ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr);
Chris@19 293 }
Chris@19 294 {
Chris@19 295 E TY, T10, TX, TZ;
Chris@19 296 TY = TQ + TR;
Chris@19 297 T10 = TV + TU;
Chris@19 298 TX = W[2];
Chris@19 299 TZ = W[3];
Chris@19 300 cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY);
Chris@19 301 ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY);
Chris@19 302 }
Chris@19 303 {
Chris@19 304 E TA, TC, Tz, TB;
Chris@19 305 TA = Tm + Tq;
Chris@19 306 TC = Tx + Tt;
Chris@19 307 Tz = W[4];
Chris@19 308 TB = W[5];
Chris@19 309 cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA);
Chris@19 310 ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA);
Chris@19 311 }
Chris@19 312 {
Chris@19 313 E TM, TO, TL, TN;
Chris@19 314 TM = TE + TF;
Chris@19 315 TO = TJ - TI;
Chris@19 316 TL = W[10];
Chris@19 317 TN = W[11];
Chris@19 318 cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM);
Chris@19 319 ci[WS(rs, 6)] = FMA(TL, TO, TN * TM);
Chris@19 320 }
Chris@19 321 {
Chris@19 322 E TS, TW, TP, TT;
Chris@19 323 TS = TQ - TR;
Chris@19 324 TW = TU - TV;
Chris@19 325 TP = W[8];
Chris@19 326 TT = W[9];
Chris@19 327 cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS);
Chris@19 328 ci[WS(rs, 5)] = FMA(TP, TW, TT * TS);
Chris@19 329 }
Chris@19 330 {
Chris@19 331 E TG, TK, TD, TH;
Chris@19 332 TG = TE - TF;
Chris@19 333 TK = TI + TJ;
Chris@19 334 TD = W[0];
Chris@19 335 TH = W[1];
Chris@19 336 cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG);
Chris@19 337 ci[WS(rs, 1)] = FMA(TD, TK, TH * TG);
Chris@19 338 }
Chris@19 339 }
Chris@19 340 }
Chris@19 341 }
Chris@19 342
Chris@19 343 static const tw_instr twinstr[] = {
Chris@19 344 {TW_FULL, 1, 7},
Chris@19 345 {TW_NEXT, 1, 0}
Chris@19 346 };
Chris@19 347
Chris@19 348 static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {36, 24, 36, 0} };
Chris@19 349
Chris@19 350 void X(codelet_hb_7) (planner *p) {
Chris@19 351 X(khc2hc_register) (p, hb_7, &desc);
Chris@19 352 }
Chris@19 353 #endif /* HAVE_FMA */