annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb_5.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:25 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@19 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@19 33 * 42 stack variables, 4 constants, and 20 memory accesses
Chris@19 34 */
Chris@19 35 #include "hb.h"
Chris@19 36
Chris@19 37 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 43 {
Chris@19 44 INT m;
Chris@19 45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@19 46 E TQ, TP, TT, TR, TS, TU;
Chris@19 47 {
Chris@19 48 E T1, Tn, TM, Tw, Tb, T8, To, Tf, Ta, Tg, Th;
Chris@19 49 {
Chris@19 50 E T2, T3, T5, T6, T4, Tu;
Chris@19 51 T1 = cr[0];
Chris@19 52 T2 = cr[WS(rs, 1)];
Chris@19 53 T3 = ci[0];
Chris@19 54 T5 = cr[WS(rs, 2)];
Chris@19 55 T6 = ci[WS(rs, 1)];
Chris@19 56 Tn = ci[WS(rs, 4)];
Chris@19 57 T4 = T2 + T3;
Chris@19 58 Tu = T2 - T3;
Chris@19 59 {
Chris@19 60 E T7, Tv, Td, Te;
Chris@19 61 T7 = T5 + T6;
Chris@19 62 Tv = T5 - T6;
Chris@19 63 Td = ci[WS(rs, 3)];
Chris@19 64 Te = cr[WS(rs, 4)];
Chris@19 65 TM = FNMS(KP618033988, Tu, Tv);
Chris@19 66 Tw = FMA(KP618033988, Tv, Tu);
Chris@19 67 Tb = T4 - T7;
Chris@19 68 T8 = T4 + T7;
Chris@19 69 To = Td - Te;
Chris@19 70 Tf = Td + Te;
Chris@19 71 Ta = FNMS(KP250000000, T8, T1);
Chris@19 72 Tg = ci[WS(rs, 2)];
Chris@19 73 Th = cr[WS(rs, 3)];
Chris@19 74 }
Chris@19 75 }
Chris@19 76 cr[0] = T1 + T8;
Chris@19 77 {
Chris@19 78 E TG, T9, Tm, Tz, TH, TC, TA, Tk, Tt, TL, Tc, Ti, Tp, TI;
Chris@19 79 TG = FNMS(KP559016994, Tb, Ta);
Chris@19 80 Tc = FMA(KP559016994, Tb, Ta);
Chris@19 81 T9 = W[0];
Chris@19 82 Ti = Tg + Th;
Chris@19 83 Tp = Tg - Th;
Chris@19 84 Tm = W[1];
Chris@19 85 {
Chris@19 86 E Ts, Tj, Tr, Tq;
Chris@19 87 Tz = W[6];
Chris@19 88 Ts = To - Tp;
Chris@19 89 Tq = To + Tp;
Chris@19 90 Tj = FMA(KP618033988, Ti, Tf);
Chris@19 91 TH = FNMS(KP618033988, Tf, Ti);
Chris@19 92 ci[0] = Tn + Tq;
Chris@19 93 Tr = FNMS(KP250000000, Tq, Tn);
Chris@19 94 TC = W[7];
Chris@19 95 TA = FMA(KP951056516, Tj, Tc);
Chris@19 96 Tk = FNMS(KP951056516, Tj, Tc);
Chris@19 97 Tt = FMA(KP559016994, Ts, Tr);
Chris@19 98 TL = FNMS(KP559016994, Ts, Tr);
Chris@19 99 }
Chris@19 100 {
Chris@19 101 E TE, TB, Ty, Tl, TD, Tx;
Chris@19 102 TE = TC * TA;
Chris@19 103 TB = Tz * TA;
Chris@19 104 Ty = Tm * Tk;
Chris@19 105 Tl = T9 * Tk;
Chris@19 106 TD = FNMS(KP951056516, Tw, Tt);
Chris@19 107 Tx = FMA(KP951056516, Tw, Tt);
Chris@19 108 TI = FMA(KP951056516, TH, TG);
Chris@19 109 TQ = FNMS(KP951056516, TH, TG);
Chris@19 110 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
Chris@19 111 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
Chris@19 112 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
Chris@19 113 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
Chris@19 114 }
Chris@19 115 {
Chris@19 116 E TF, TK, TN, TJ, TO;
Chris@19 117 TF = W[2];
Chris@19 118 TK = W[3];
Chris@19 119 TP = W[4];
Chris@19 120 TT = FMA(KP951056516, TM, TL);
Chris@19 121 TN = FNMS(KP951056516, TM, TL);
Chris@19 122 TJ = TF * TI;
Chris@19 123 TO = TK * TI;
Chris@19 124 TR = TP * TQ;
Chris@19 125 TS = W[5];
Chris@19 126 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
Chris@19 127 ci[WS(rs, 2)] = FMA(TF, TN, TO);
Chris@19 128 }
Chris@19 129 }
Chris@19 130 }
Chris@19 131 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
Chris@19 132 TU = TS * TQ;
Chris@19 133 ci[WS(rs, 3)] = FMA(TP, TT, TU);
Chris@19 134 }
Chris@19 135 }
Chris@19 136 }
Chris@19 137
Chris@19 138 static const tw_instr twinstr[] = {
Chris@19 139 {TW_FULL, 1, 5},
Chris@19 140 {TW_NEXT, 1, 0}
Chris@19 141 };
Chris@19 142
Chris@19 143 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {14, 8, 26, 0} };
Chris@19 144
Chris@19 145 void X(codelet_hb_5) (planner *p) {
Chris@19 146 X(khc2hc_register) (p, hb_5, &desc);
Chris@19 147 }
Chris@19 148 #else /* HAVE_FMA */
Chris@19 149
Chris@19 150 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include hb.h */
Chris@19 151
Chris@19 152 /*
Chris@19 153 * This function contains 40 FP additions, 28 FP multiplications,
Chris@19 154 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@19 155 * 27 stack variables, 4 constants, and 20 memory accesses
Chris@19 156 */
Chris@19 157 #include "hb.h"
Chris@19 158
Chris@19 159 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 160 {
Chris@19 161 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 162 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 163 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 164 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 165 {
Chris@19 166 INT m;
Chris@19 167 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@19 168 E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
Chris@19 169 {
Chris@19 170 E T4, Tq, T7, Tr;
Chris@19 171 T1 = cr[0];
Chris@19 172 {
Chris@19 173 E T2, T3, T5, T6;
Chris@19 174 T2 = cr[WS(rs, 1)];
Chris@19 175 T3 = ci[0];
Chris@19 176 T4 = T2 + T3;
Chris@19 177 Tq = T2 - T3;
Chris@19 178 T5 = cr[WS(rs, 2)];
Chris@19 179 T6 = ci[WS(rs, 1)];
Chris@19 180 T7 = T5 + T6;
Chris@19 181 Tr = T5 - T6;
Chris@19 182 }
Chris@19 183 Tj = KP559016994 * (T4 - T7);
Chris@19 184 TG = FMA(KP951056516, Tq, KP587785252 * Tr);
Chris@19 185 Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
Chris@19 186 T8 = T4 + T7;
Chris@19 187 Ti = FNMS(KP250000000, T8, T1);
Chris@19 188 }
Chris@19 189 {
Chris@19 190 E Tc, Tl, Tf, Tm;
Chris@19 191 T9 = ci[WS(rs, 4)];
Chris@19 192 {
Chris@19 193 E Ta, Tb, Td, Te;
Chris@19 194 Ta = ci[WS(rs, 3)];
Chris@19 195 Tb = cr[WS(rs, 4)];
Chris@19 196 Tc = Ta - Tb;
Chris@19 197 Tl = Ta + Tb;
Chris@19 198 Td = ci[WS(rs, 2)];
Chris@19 199 Te = cr[WS(rs, 3)];
Chris@19 200 Tf = Td - Te;
Chris@19 201 Tm = Td + Te;
Chris@19 202 }
Chris@19 203 Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
Chris@19 204 TD = FMA(KP951056516, Tl, KP587785252 * Tm);
Chris@19 205 Tu = KP559016994 * (Tc - Tf);
Chris@19 206 Tg = Tc + Tf;
Chris@19 207 Tt = FNMS(KP250000000, Tg, T9);
Chris@19 208 }
Chris@19 209 cr[0] = T1 + T8;
Chris@19 210 ci[0] = T9 + Tg;
Chris@19 211 {
Chris@19 212 E To, Ty, Tw, TA, Tk, Tv;
Chris@19 213 Tk = Ti - Tj;
Chris@19 214 To = Tk - Tn;
Chris@19 215 Ty = Tk + Tn;
Chris@19 216 Tv = Tt - Tu;
Chris@19 217 Tw = Ts + Tv;
Chris@19 218 TA = Tv - Ts;
Chris@19 219 {
Chris@19 220 E Th, Tp, Tx, Tz;
Chris@19 221 Th = W[2];
Chris@19 222 Tp = W[3];
Chris@19 223 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
Chris@19 224 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
Chris@19 225 Tx = W[4];
Chris@19 226 Tz = W[5];
Chris@19 227 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
Chris@19 228 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
Chris@19 229 }
Chris@19 230 }
Chris@19 231 {
Chris@19 232 E TE, TK, TI, TM, TC, TH;
Chris@19 233 TC = Tj + Ti;
Chris@19 234 TE = TC - TD;
Chris@19 235 TK = TC + TD;
Chris@19 236 TH = Tu + Tt;
Chris@19 237 TI = TG + TH;
Chris@19 238 TM = TH - TG;
Chris@19 239 {
Chris@19 240 E TB, TF, TJ, TL;
Chris@19 241 TB = W[0];
Chris@19 242 TF = W[1];
Chris@19 243 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
Chris@19 244 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
Chris@19 245 TJ = W[6];
Chris@19 246 TL = W[7];
Chris@19 247 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
Chris@19 248 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
Chris@19 249 }
Chris@19 250 }
Chris@19 251 }
Chris@19 252 }
Chris@19 253 }
Chris@19 254
Chris@19 255 static const tw_instr twinstr[] = {
Chris@19 256 {TW_FULL, 1, 5},
Chris@19 257 {TW_NEXT, 1, 0}
Chris@19 258 };
Chris@19 259
Chris@19 260 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {26, 14, 14, 0} };
Chris@19 261
Chris@19 262 void X(codelet_hb_5) (planner *p) {
Chris@19 263 X(khc2hc_register) (p, hb_5, &desc);
Chris@19 264 }
Chris@19 265 #endif /* HAVE_FMA */