annotate fft/fftw/fftw-3.3.4/rdft/scalar/r2cb/hb2_8.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:50:28 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include hb.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 74 FP additions, 50 FP multiplications,
Chris@19 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
Chris@19 33 * 77 stack variables, 1 constants, and 32 memory accesses
Chris@19 34 */
Chris@19 35 #include "hb.h"
Chris@19 36
Chris@19 37 static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 40 {
Chris@19 41 INT m;
Chris@19 42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 43 E Tf, Tg, Tl, Tp, Ti, Tj, T1o, T1u, Tk, T1b, To, T1e, TK, Tq, T13;
Chris@19 44 E TP, T1p, T7, T1h, T1v, TZ, Tv, Tw, Ta, Tx, T1j, TE, TB, Td, Ty;
Chris@19 45 E Th, T1n, T1t;
Chris@19 46 Tf = W[0];
Chris@19 47 Tg = W[2];
Chris@19 48 Tl = W[4];
Chris@19 49 Tp = W[5];
Chris@19 50 Ti = W[1];
Chris@19 51 Th = Tf * Tg;
Chris@19 52 T1n = Tf * Tl;
Chris@19 53 T1t = Tf * Tp;
Chris@19 54 Tj = W[3];
Chris@19 55 {
Chris@19 56 E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
Chris@19 57 {
Chris@19 58 E TM, TN, T4, T5;
Chris@19 59 {
Chris@19 60 E T1, Tn, T2, TJ, Tm;
Chris@19 61 T1 = cr[0];
Chris@19 62 T1o = FMA(Ti, Tp, T1n);
Chris@19 63 T1u = FNMS(Ti, Tl, T1t);
Chris@19 64 Tk = FMA(Ti, Tj, Th);
Chris@19 65 T1b = FNMS(Ti, Tj, Th);
Chris@19 66 Tn = Tf * Tj;
Chris@19 67 T2 = ci[WS(rs, 3)];
Chris@19 68 TM = ci[WS(rs, 7)];
Chris@19 69 TJ = Tk * Tp;
Chris@19 70 Tm = Tk * Tl;
Chris@19 71 To = FNMS(Ti, Tg, Tn);
Chris@19 72 T1e = FMA(Ti, Tg, Tn);
Chris@19 73 Tr = T1 - T2;
Chris@19 74 T3 = T1 + T2;
Chris@19 75 TK = FNMS(To, Tl, TJ);
Chris@19 76 Tq = FMA(To, Tp, Tm);
Chris@19 77 TN = cr[WS(rs, 4)];
Chris@19 78 }
Chris@19 79 T4 = cr[WS(rs, 2)];
Chris@19 80 T5 = ci[WS(rs, 1)];
Chris@19 81 Ts = ci[WS(rs, 5)];
Chris@19 82 T1f = TM - TN;
Chris@19 83 TO = TM + TN;
Chris@19 84 TL = T4 - T5;
Chris@19 85 T6 = T4 + T5;
Chris@19 86 Tt = cr[WS(rs, 6)];
Chris@19 87 }
Chris@19 88 {
Chris@19 89 E TC, TD, Tb, Tc;
Chris@19 90 {
Chris@19 91 E T8, T1g, Tu, T9;
Chris@19 92 T8 = cr[WS(rs, 1)];
Chris@19 93 T13 = TO - TL;
Chris@19 94 TP = TL + TO;
Chris@19 95 T1p = T3 - T6;
Chris@19 96 T7 = T3 + T6;
Chris@19 97 T1g = Ts - Tt;
Chris@19 98 Tu = Ts + Tt;
Chris@19 99 T9 = ci[WS(rs, 2)];
Chris@19 100 TC = ci[WS(rs, 4)];
Chris@19 101 T1h = T1f + T1g;
Chris@19 102 T1v = T1f - T1g;
Chris@19 103 TZ = Tr + Tu;
Chris@19 104 Tv = Tr - Tu;
Chris@19 105 Tw = T8 - T9;
Chris@19 106 Ta = T8 + T9;
Chris@19 107 TD = cr[WS(rs, 7)];
Chris@19 108 }
Chris@19 109 Tb = ci[0];
Chris@19 110 Tc = cr[WS(rs, 3)];
Chris@19 111 Tx = ci[WS(rs, 6)];
Chris@19 112 T1j = TC - TD;
Chris@19 113 TE = TC + TD;
Chris@19 114 TB = Tb - Tc;
Chris@19 115 Td = Tb + Tc;
Chris@19 116 Ty = cr[WS(rs, 5)];
Chris@19 117 }
Chris@19 118 }
Chris@19 119 {
Chris@19 120 E TR, TF, Te, T1w;
Chris@19 121 TR = TB + TE;
Chris@19 122 TF = TB - TE;
Chris@19 123 Te = Ta + Td;
Chris@19 124 T1w = Ta - Td;
Chris@19 125 {
Chris@19 126 E Tz, T1i, T1B, T1x, T1c;
Chris@19 127 Tz = Tx + Ty;
Chris@19 128 T1i = Tx - Ty;
Chris@19 129 T1B = T1w + T1v;
Chris@19 130 T1x = T1v - T1w;
Chris@19 131 T1c = T7 - Te;
Chris@19 132 cr[0] = T7 + Te;
Chris@19 133 {
Chris@19 134 E T1k, T1q, TQ, TA;
Chris@19 135 T1k = T1i + T1j;
Chris@19 136 T1q = T1j - T1i;
Chris@19 137 TQ = Tw + Tz;
Chris@19 138 TA = Tw - Tz;
Chris@19 139 {
Chris@19 140 E T1y, T1C, T1m, T1d;
Chris@19 141 T1y = T1o * T1x;
Chris@19 142 T1C = Tk * T1B;
Chris@19 143 T1m = T1e * T1c;
Chris@19 144 T1d = T1b * T1c;
Chris@19 145 {
Chris@19 146 E T1z, T1r, T1l, TG, T14;
Chris@19 147 T1z = T1p + T1q;
Chris@19 148 T1r = T1p - T1q;
Chris@19 149 T1l = T1h - T1k;
Chris@19 150 ci[0] = T1h + T1k;
Chris@19 151 TG = TA + TF;
Chris@19 152 T14 = TA - TF;
Chris@19 153 {
Chris@19 154 E T10, TS, T1s, T1A;
Chris@19 155 T10 = TQ + TR;
Chris@19 156 TS = TQ - TR;
Chris@19 157 ci[WS(rs, 6)] = FMA(T1u, T1r, T1y);
Chris@19 158 T1s = T1o * T1r;
Chris@19 159 ci[WS(rs, 2)] = FMA(To, T1z, T1C);
Chris@19 160 T1A = Tk * T1z;
Chris@19 161 ci[WS(rs, 4)] = FMA(T1b, T1l, T1m);
Chris@19 162 cr[WS(rs, 4)] = FNMS(T1e, T1l, T1d);
Chris@19 163 {
Chris@19 164 E T15, T19, TV, TH;
Chris@19 165 T15 = FMA(KP707106781, T14, T13);
Chris@19 166 T19 = FNMS(KP707106781, T14, T13);
Chris@19 167 TV = FMA(KP707106781, TG, Tv);
Chris@19 168 TH = FNMS(KP707106781, TG, Tv);
Chris@19 169 {
Chris@19 170 E TT, TX, T11, T17;
Chris@19 171 TT = FNMS(KP707106781, TS, TP);
Chris@19 172 TX = FMA(KP707106781, TS, TP);
Chris@19 173 T11 = FNMS(KP707106781, T10, TZ);
Chris@19 174 T17 = FMA(KP707106781, T10, TZ);
Chris@19 175 cr[WS(rs, 6)] = FNMS(T1u, T1x, T1s);
Chris@19 176 cr[WS(rs, 2)] = FNMS(To, T1B, T1A);
Chris@19 177 {
Chris@19 178 E T1a, T16, TU, TI;
Chris@19 179 T1a = Tl * T19;
Chris@19 180 T16 = Tg * T15;
Chris@19 181 TU = TK * TH;
Chris@19 182 TI = Tq * TH;
Chris@19 183 {
Chris@19 184 E TY, TW, T18, T12;
Chris@19 185 TY = Ti * TV;
Chris@19 186 TW = Tf * TV;
Chris@19 187 T18 = Tl * T17;
Chris@19 188 T12 = Tg * T11;
Chris@19 189 ci[WS(rs, 7)] = FMA(Tp, T17, T1a);
Chris@19 190 ci[WS(rs, 3)] = FMA(Tj, T11, T16);
Chris@19 191 ci[WS(rs, 5)] = FMA(Tq, TT, TU);
Chris@19 192 cr[WS(rs, 5)] = FNMS(TK, TT, TI);
Chris@19 193 ci[WS(rs, 1)] = FMA(Tf, TX, TY);
Chris@19 194 cr[WS(rs, 1)] = FNMS(Ti, TX, TW);
Chris@19 195 cr[WS(rs, 7)] = FNMS(Tp, T19, T18);
Chris@19 196 cr[WS(rs, 3)] = FNMS(Tj, T15, T12);
Chris@19 197 }
Chris@19 198 }
Chris@19 199 }
Chris@19 200 }
Chris@19 201 }
Chris@19 202 }
Chris@19 203 }
Chris@19 204 }
Chris@19 205 }
Chris@19 206 }
Chris@19 207 }
Chris@19 208 }
Chris@19 209 }
Chris@19 210
Chris@19 211 static const tw_instr twinstr[] = {
Chris@19 212 {TW_CEXP, 1, 1},
Chris@19 213 {TW_CEXP, 1, 3},
Chris@19 214 {TW_CEXP, 1, 7},
Chris@19 215 {TW_NEXT, 1, 0}
Chris@19 216 };
Chris@19 217
Chris@19 218 static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
Chris@19 219
Chris@19 220 void X(codelet_hb2_8) (planner *p) {
Chris@19 221 X(khc2hc_register) (p, hb2_8, &desc);
Chris@19 222 }
Chris@19 223 #else /* HAVE_FMA */
Chris@19 224
Chris@19 225 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include hb.h */
Chris@19 226
Chris@19 227 /*
Chris@19 228 * This function contains 74 FP additions, 44 FP multiplications,
Chris@19 229 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
Chris@19 230 * 46 stack variables, 1 constants, and 32 memory accesses
Chris@19 231 */
Chris@19 232 #include "hb.h"
Chris@19 233
Chris@19 234 static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 235 {
Chris@19 236 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 237 {
Chris@19 238 INT m;
Chris@19 239 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@19 240 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
Chris@19 241 {
Chris@19 242 E Th, To, Tk, Tn;
Chris@19 243 Tf = W[0];
Chris@19 244 Ti = W[1];
Chris@19 245 Tg = W[2];
Chris@19 246 Tj = W[3];
Chris@19 247 Th = Tf * Tg;
Chris@19 248 To = Ti * Tg;
Chris@19 249 Tk = Ti * Tj;
Chris@19 250 Tn = Tf * Tj;
Chris@19 251 Tl = Th - Tk;
Chris@19 252 Tp = Tn + To;
Chris@19 253 TP = Th + Tk;
Chris@19 254 TR = Tn - To;
Chris@19 255 TF = W[4];
Chris@19 256 TG = W[5];
Chris@19 257 TH = FMA(Tf, TF, Ti * TG);
Chris@19 258 T15 = FNMS(TR, TF, TP * TG);
Chris@19 259 TL = FNMS(Ti, TF, Tf * TG);
Chris@19 260 TT = FMA(TP, TF, TR * TG);
Chris@19 261 }
Chris@19 262 {
Chris@19 263 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
Chris@19 264 E TN, Tm, TE;
Chris@19 265 {
Chris@19 266 E T3, TU, Tv, TV, T6, T16, Ts, T17;
Chris@19 267 {
Chris@19 268 E T1, T2, Tt, Tu;
Chris@19 269 T1 = cr[0];
Chris@19 270 T2 = ci[WS(rs, 3)];
Chris@19 271 T3 = T1 + T2;
Chris@19 272 TU = T1 - T2;
Chris@19 273 Tt = ci[WS(rs, 5)];
Chris@19 274 Tu = cr[WS(rs, 6)];
Chris@19 275 Tv = Tt - Tu;
Chris@19 276 TV = Tt + Tu;
Chris@19 277 }
Chris@19 278 {
Chris@19 279 E T4, T5, Tq, Tr;
Chris@19 280 T4 = cr[WS(rs, 2)];
Chris@19 281 T5 = ci[WS(rs, 1)];
Chris@19 282 T6 = T4 + T5;
Chris@19 283 T16 = T4 - T5;
Chris@19 284 Tq = ci[WS(rs, 7)];
Chris@19 285 Tr = cr[WS(rs, 4)];
Chris@19 286 Ts = Tq - Tr;
Chris@19 287 T17 = Tq + Tr;
Chris@19 288 }
Chris@19 289 T7 = T3 + T6;
Chris@19 290 T1f = TU + TV;
Chris@19 291 T1i = T17 - T16;
Chris@19 292 Tw = Ts + Tv;
Chris@19 293 TI = T3 - T6;
Chris@19 294 TW = TU - TV;
Chris@19 295 T18 = T16 + T17;
Chris@19 296 TM = Ts - Tv;
Chris@19 297 }
Chris@19 298 {
Chris@19 299 E Ta, TX, TC, T11, Td, T10, Tz, TY;
Chris@19 300 {
Chris@19 301 E T8, T9, TA, TB;
Chris@19 302 T8 = cr[WS(rs, 1)];
Chris@19 303 T9 = ci[WS(rs, 2)];
Chris@19 304 Ta = T8 + T9;
Chris@19 305 TX = T8 - T9;
Chris@19 306 TA = ci[WS(rs, 4)];
Chris@19 307 TB = cr[WS(rs, 7)];
Chris@19 308 TC = TA - TB;
Chris@19 309 T11 = TA + TB;
Chris@19 310 }
Chris@19 311 {
Chris@19 312 E Tb, Tc, Tx, Ty;
Chris@19 313 Tb = ci[0];
Chris@19 314 Tc = cr[WS(rs, 3)];
Chris@19 315 Td = Tb + Tc;
Chris@19 316 T10 = Tb - Tc;
Chris@19 317 Tx = ci[WS(rs, 6)];
Chris@19 318 Ty = cr[WS(rs, 5)];
Chris@19 319 Tz = Tx - Ty;
Chris@19 320 TY = Tx + Ty;
Chris@19 321 }
Chris@19 322 Te = Ta + Td;
Chris@19 323 T19 = TX + TY;
Chris@19 324 T1a = T10 + T11;
Chris@19 325 TD = Tz + TC;
Chris@19 326 TJ = TC - Tz;
Chris@19 327 TZ = TX - TY;
Chris@19 328 T12 = T10 - T11;
Chris@19 329 TN = Ta - Td;
Chris@19 330 }
Chris@19 331 cr[0] = T7 + Te;
Chris@19 332 ci[0] = Tw + TD;
Chris@19 333 Tm = T7 - Te;
Chris@19 334 TE = Tw - TD;
Chris@19 335 cr[WS(rs, 4)] = FNMS(Tp, TE, Tl * Tm);
Chris@19 336 ci[WS(rs, 4)] = FMA(Tp, Tm, Tl * TE);
Chris@19 337 {
Chris@19 338 E TQ, TS, TK, TO;
Chris@19 339 TQ = TI + TJ;
Chris@19 340 TS = TN + TM;
Chris@19 341 cr[WS(rs, 2)] = FNMS(TR, TS, TP * TQ);
Chris@19 342 ci[WS(rs, 2)] = FMA(TP, TS, TR * TQ);
Chris@19 343 TK = TI - TJ;
Chris@19 344 TO = TM - TN;
Chris@19 345 cr[WS(rs, 6)] = FNMS(TL, TO, TH * TK);
Chris@19 346 ci[WS(rs, 6)] = FMA(TH, TO, TL * TK);
Chris@19 347 }
Chris@19 348 {
Chris@19 349 E T1h, T1l, T1k, T1m, T1g, T1j;
Chris@19 350 T1g = KP707106781 * (T19 + T1a);
Chris@19 351 T1h = T1f - T1g;
Chris@19 352 T1l = T1f + T1g;
Chris@19 353 T1j = KP707106781 * (TZ - T12);
Chris@19 354 T1k = T1i + T1j;
Chris@19 355 T1m = T1i - T1j;
Chris@19 356 cr[WS(rs, 3)] = FNMS(Tj, T1k, Tg * T1h);
Chris@19 357 ci[WS(rs, 3)] = FMA(Tg, T1k, Tj * T1h);
Chris@19 358 cr[WS(rs, 7)] = FNMS(TG, T1m, TF * T1l);
Chris@19 359 ci[WS(rs, 7)] = FMA(TF, T1m, TG * T1l);
Chris@19 360 }
Chris@19 361 {
Chris@19 362 E T14, T1d, T1c, T1e, T13, T1b;
Chris@19 363 T13 = KP707106781 * (TZ + T12);
Chris@19 364 T14 = TW - T13;
Chris@19 365 T1d = TW + T13;
Chris@19 366 T1b = KP707106781 * (T19 - T1a);
Chris@19 367 T1c = T18 - T1b;
Chris@19 368 T1e = T18 + T1b;
Chris@19 369 cr[WS(rs, 5)] = FNMS(T15, T1c, TT * T14);
Chris@19 370 ci[WS(rs, 5)] = FMA(T15, T14, TT * T1c);
Chris@19 371 cr[WS(rs, 1)] = FNMS(Ti, T1e, Tf * T1d);
Chris@19 372 ci[WS(rs, 1)] = FMA(Ti, T1d, Tf * T1e);
Chris@19 373 }
Chris@19 374 }
Chris@19 375 }
Chris@19 376 }
Chris@19 377 }
Chris@19 378
Chris@19 379 static const tw_instr twinstr[] = {
Chris@19 380 {TW_CEXP, 1, 1},
Chris@19 381 {TW_CEXP, 1, 3},
Chris@19 382 {TW_CEXP, 1, 7},
Chris@19 383 {TW_NEXT, 1, 0}
Chris@19 384 };
Chris@19 385
Chris@19 386 static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
Chris@19 387
Chris@19 388 void X(codelet_hb2_8) (planner *p) {
Chris@19 389 X(khc2hc_register) (p, hb2_8, &desc);
Chris@19 390 }
Chris@19 391 #endif /* HAVE_FMA */