annotate fft/fftw/fftw-3.3.4/rdft/rank0.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* plans for rank-0 RDFTs (copy operations) */
Chris@19 23
Chris@19 24 #include "rdft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_STRING_H
Chris@19 27 #include <string.h> /* for memcpy() */
Chris@19 28 #endif
Chris@19 29
Chris@19 30 #define MAXRNK 32 /* FIXME: should malloc() */
Chris@19 31
Chris@19 32 typedef struct {
Chris@19 33 plan_rdft super;
Chris@19 34 INT vl;
Chris@19 35 int rnk;
Chris@19 36 iodim d[MAXRNK];
Chris@19 37 const char *nam;
Chris@19 38 } P;
Chris@19 39
Chris@19 40 typedef struct {
Chris@19 41 solver super;
Chris@19 42 rdftapply apply;
Chris@19 43 int (*applicable)(const P *pln, const problem_rdft *p);
Chris@19 44 const char *nam;
Chris@19 45 } S;
Chris@19 46
Chris@19 47 /* copy up to MAXRNK dimensions from problem into plan. If a
Chris@19 48 contiguous dimension exists, save its length in pln->vl */
Chris@19 49 static int fill_iodim(P *pln, const problem_rdft *p)
Chris@19 50 {
Chris@19 51 int i;
Chris@19 52 const tensor *vecsz = p->vecsz;
Chris@19 53
Chris@19 54 pln->vl = 1;
Chris@19 55 pln->rnk = 0;
Chris@19 56 for (i = 0; i < vecsz->rnk; ++i) {
Chris@19 57 /* extract contiguous dimensions */
Chris@19 58 if (pln->vl == 1 &&
Chris@19 59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
Chris@19 60 pln->vl = vecsz->dims[i].n;
Chris@19 61 else if (pln->rnk == MAXRNK)
Chris@19 62 return 0;
Chris@19 63 else
Chris@19 64 pln->d[pln->rnk++] = vecsz->dims[i];
Chris@19 65 }
Chris@19 66
Chris@19 67 return 1;
Chris@19 68 }
Chris@19 69
Chris@19 70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
Chris@19 71 static void copy(const iodim *d, int rnk, INT vl,
Chris@19 72 R *I, R *O,
Chris@19 73 cpy2d_func cpy2d)
Chris@19 74 {
Chris@19 75 A(rnk >= 2);
Chris@19 76 if (rnk == 2)
Chris@19 77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
Chris@19 78 else {
Chris@19 79 INT i;
Chris@19 80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
Chris@19 81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
Chris@19 82 }
Chris@19 83 }
Chris@19 84
Chris@19 85 /* FIXME: should be more general */
Chris@19 86 static int transposep(const P *pln)
Chris@19 87 {
Chris@19 88 int i;
Chris@19 89
Chris@19 90 for (i = 0; i < pln->rnk - 2; ++i)
Chris@19 91 if (pln->d[i].is != pln->d[i].os)
Chris@19 92 return 0;
Chris@19 93
Chris@19 94 return (pln->d[i].n == pln->d[i+1].n &&
Chris@19 95 pln->d[i].is == pln->d[i+1].os &&
Chris@19 96 pln->d[i].os == pln->d[i+1].is);
Chris@19 97 }
Chris@19 98
Chris@19 99 /* generic higher-rank transpose routine, calls transpose2d() to do
Chris@19 100 * the real work */
Chris@19 101 static void transpose(const iodim *d, int rnk, INT vl,
Chris@19 102 R *I,
Chris@19 103 transpose_func transpose2d)
Chris@19 104 {
Chris@19 105 A(rnk >= 2);
Chris@19 106 if (rnk == 2)
Chris@19 107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
Chris@19 108 else {
Chris@19 109 INT i;
Chris@19 110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
Chris@19 111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
Chris@19 112 }
Chris@19 113 }
Chris@19 114
Chris@19 115 /**************************************************************/
Chris@19 116 /* rank 0,1,2, out of place, iterative */
Chris@19 117 static void apply_iter(const plan *ego_, R *I, R *O)
Chris@19 118 {
Chris@19 119 const P *ego = (const P *) ego_;
Chris@19 120
Chris@19 121 switch (ego->rnk) {
Chris@19 122 case 0:
Chris@19 123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
Chris@19 124 break;
Chris@19 125 case 1:
Chris@19 126 X(cpy1d)(I, O,
Chris@19 127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
Chris@19 128 ego->vl);
Chris@19 129 break;
Chris@19 130 default:
Chris@19 131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
Chris@19 132 break;
Chris@19 133 }
Chris@19 134 }
Chris@19 135
Chris@19 136 static int applicable_iter(const P *pln, const problem_rdft *p)
Chris@19 137 {
Chris@19 138 UNUSED(pln);
Chris@19 139 return (p->I != p->O);
Chris@19 140 }
Chris@19 141
Chris@19 142 /**************************************************************/
Chris@19 143 /* out of place, write contiguous output */
Chris@19 144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
Chris@19 145 {
Chris@19 146 const P *ego = (const P *) ego_;
Chris@19 147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
Chris@19 148 }
Chris@19 149
Chris@19 150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
Chris@19 151 {
Chris@19 152 int rnk = pln->rnk;
Chris@19 153 return (1
Chris@19 154 && p->I != p->O
Chris@19 155 && rnk >= 2
Chris@19 156
Chris@19 157 /* must not duplicate apply_iter */
Chris@19 158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
Chris@19 159 ||
Chris@19 160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
Chris@19 161 );
Chris@19 162 }
Chris@19 163
Chris@19 164 /**************************************************************/
Chris@19 165 /* out of place, tiled, no buffering */
Chris@19 166 static void apply_tiled(const plan *ego_, R *I, R *O)
Chris@19 167 {
Chris@19 168 const P *ego = (const P *) ego_;
Chris@19 169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
Chris@19 170 }
Chris@19 171
Chris@19 172 static int applicable_tiled(const P *pln, const problem_rdft *p)
Chris@19 173 {
Chris@19 174 return (1
Chris@19 175 && p->I != p->O
Chris@19 176 && pln->rnk >= 2
Chris@19 177
Chris@19 178 /* somewhat arbitrary */
Chris@19 179 && X(compute_tilesz)(pln->vl, 1) > 4
Chris@19 180 );
Chris@19 181 }
Chris@19 182
Chris@19 183 /**************************************************************/
Chris@19 184 /* out of place, tiled, with buffer */
Chris@19 185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
Chris@19 186 {
Chris@19 187 const P *ego = (const P *) ego_;
Chris@19 188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
Chris@19 189 }
Chris@19 190
Chris@19 191 #define applicable_tiledbuf applicable_tiled
Chris@19 192
Chris@19 193 /**************************************************************/
Chris@19 194 /* rank 0, out of place, using memcpy */
Chris@19 195 static void apply_memcpy(const plan *ego_, R *I, R *O)
Chris@19 196 {
Chris@19 197 const P *ego = (const P *) ego_;
Chris@19 198
Chris@19 199 A(ego->rnk == 0);
Chris@19 200 memcpy(O, I, ego->vl * sizeof(R));
Chris@19 201 }
Chris@19 202
Chris@19 203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
Chris@19 204 {
Chris@19 205 return (1
Chris@19 206 && p->I != p->O
Chris@19 207 && pln->rnk == 0
Chris@19 208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
Chris@19 209 );
Chris@19 210 }
Chris@19 211
Chris@19 212 /**************************************************************/
Chris@19 213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
Chris@19 214 transposes of vl-tuples ... for large vl it should be more
Chris@19 215 efficient to use memcpy than the tiled stuff). */
Chris@19 216
Chris@19 217 static void memcpy_loop(INT cpysz, int rnk, const iodim *d, R *I, R *O)
Chris@19 218 {
Chris@19 219 INT i, n = d->n, is = d->is, os = d->os;
Chris@19 220 if (rnk == 1)
Chris@19 221 for (i = 0; i < n; ++i, I += is, O += os)
Chris@19 222 memcpy(O, I, cpysz);
Chris@19 223 else {
Chris@19 224 --rnk; ++d;
Chris@19 225 for (i = 0; i < n; ++i, I += is, O += os)
Chris@19 226 memcpy_loop(cpysz, rnk, d, I, O);
Chris@19 227 }
Chris@19 228 }
Chris@19 229
Chris@19 230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
Chris@19 231 {
Chris@19 232 const P *ego = (const P *) ego_;
Chris@19 233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
Chris@19 234 }
Chris@19 235
Chris@19 236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
Chris@19 237 {
Chris@19 238 return (p->I != p->O
Chris@19 239 && pln->rnk > 0
Chris@19 240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
Chris@19 241 }
Chris@19 242
Chris@19 243 /**************************************************************/
Chris@19 244 /* rank 2, in place, square transpose, iterative */
Chris@19 245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
Chris@19 246 {
Chris@19 247 const P *ego = (const P *) ego_;
Chris@19 248 UNUSED(O);
Chris@19 249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
Chris@19 250 }
Chris@19 251
Chris@19 252
Chris@19 253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
Chris@19 254 {
Chris@19 255 return (1
Chris@19 256 && p->I == p->O
Chris@19 257 && pln->rnk >= 2
Chris@19 258 && transposep(pln));
Chris@19 259 }
Chris@19 260
Chris@19 261 /**************************************************************/
Chris@19 262 /* rank 2, in place, square transpose, tiled */
Chris@19 263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
Chris@19 264 {
Chris@19 265 const P *ego = (const P *) ego_;
Chris@19 266 UNUSED(O);
Chris@19 267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
Chris@19 268 }
Chris@19 269
Chris@19 270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
Chris@19 271 {
Chris@19 272 return (1
Chris@19 273 && applicable_ip_sq(pln, p)
Chris@19 274
Chris@19 275 /* somewhat arbitrary */
Chris@19 276 && X(compute_tilesz)(pln->vl, 2) > 4
Chris@19 277 );
Chris@19 278 }
Chris@19 279
Chris@19 280 /**************************************************************/
Chris@19 281 /* rank 2, in place, square transpose, tiled, buffered */
Chris@19 282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
Chris@19 283 {
Chris@19 284 const P *ego = (const P *) ego_;
Chris@19 285 UNUSED(O);
Chris@19 286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
Chris@19 287 }
Chris@19 288
Chris@19 289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
Chris@19 290
Chris@19 291 /**************************************************************/
Chris@19 292 static int applicable(const S *ego, const problem *p_)
Chris@19 293 {
Chris@19 294 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 295 P pln;
Chris@19 296 return (1
Chris@19 297 && p->sz->rnk == 0
Chris@19 298 && FINITE_RNK(p->vecsz->rnk)
Chris@19 299 && fill_iodim(&pln, p)
Chris@19 300 && ego->applicable(&pln, p)
Chris@19 301 );
Chris@19 302 }
Chris@19 303
Chris@19 304 static void print(const plan *ego_, printer *p)
Chris@19 305 {
Chris@19 306 const P *ego = (const P *) ego_;
Chris@19 307 int i;
Chris@19 308 p->print(p, "(%s/%D", ego->nam, ego->vl);
Chris@19 309 for (i = 0; i < ego->rnk; ++i)
Chris@19 310 p->print(p, "%v", ego->d[i].n);
Chris@19 311 p->print(p, ")");
Chris@19 312 }
Chris@19 313
Chris@19 314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 315 {
Chris@19 316 const problem_rdft *p;
Chris@19 317 const S *ego = (const S *) ego_;
Chris@19 318 P *pln;
Chris@19 319 int retval;
Chris@19 320
Chris@19 321 static const plan_adt padt = {
Chris@19 322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
Chris@19 323 };
Chris@19 324
Chris@19 325 UNUSED(plnr);
Chris@19 326
Chris@19 327 if (!applicable(ego, p_))
Chris@19 328 return (plan *) 0;
Chris@19 329
Chris@19 330 p = (const problem_rdft *) p_;
Chris@19 331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
Chris@19 332
Chris@19 333 retval = fill_iodim(pln, p);
Chris@19 334 (void)retval; /* UNUSED unless DEBUG */
Chris@19 335 A(retval);
Chris@19 336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
Chris@19 337 pln->nam = ego->nam;
Chris@19 338
Chris@19 339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
Chris@19 340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
Chris@19 341 return &(pln->super.super);
Chris@19 342 }
Chris@19 343
Chris@19 344
Chris@19 345 void X(rdft_rank0_register)(planner *p)
Chris@19 346 {
Chris@19 347 unsigned i;
Chris@19 348 static struct {
Chris@19 349 rdftapply apply;
Chris@19 350 int (*applicable)(const P *, const problem_rdft *);
Chris@19 351 const char *nam;
Chris@19 352 } tab[] = {
Chris@19 353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
Chris@19 354 { apply_memcpy_loop, applicable_memcpy_loop,
Chris@19 355 "rdft-rank0-memcpy-loop" },
Chris@19 356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
Chris@19 357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
Chris@19 358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
Chris@19 359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
Chris@19 360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
Chris@19 361 {
Chris@19 362 apply_ip_sq_tiled,
Chris@19 363 applicable_ip_sq_tiled,
Chris@19 364 "rdft-rank0-ip-sq-tiled"
Chris@19 365 },
Chris@19 366 {
Chris@19 367 apply_ip_sq_tiledbuf,
Chris@19 368 applicable_ip_sq_tiledbuf,
Chris@19 369 "rdft-rank0-ip-sq-tiledbuf"
Chris@19 370 },
Chris@19 371 };
Chris@19 372
Chris@19 373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
Chris@19 374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 375 S *slv = MKSOLVER(S, &sadt);
Chris@19 376 slv->apply = tab[i].apply;
Chris@19 377 slv->applicable = tab[i].applicable;
Chris@19 378 slv->nam = tab[i].nam;
Chris@19 379 REGISTER_SOLVER(p, &(slv->super));
Chris@19 380 }
Chris@19 381 }