annotate fft/fftw/fftw-3.3.4/rdft/problem2.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 #include "dft.h"
Chris@19 23 #include "rdft.h"
Chris@19 24 #include <stddef.h>
Chris@19 25
Chris@19 26 static void destroy(problem *ego_)
Chris@19 27 {
Chris@19 28 problem_rdft2 *ego = (problem_rdft2 *) ego_;
Chris@19 29 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@19 30 X(ifree)(ego_);
Chris@19 31 }
Chris@19 32
Chris@19 33 static void hash(const problem *p_, md5 *m)
Chris@19 34 {
Chris@19 35 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@19 36 X(md5puts)(m, "rdft2");
Chris@19 37 X(md5int)(m, p->r0 == p->cr);
Chris@19 38 X(md5INT)(m, p->r1 - p->r0);
Chris@19 39 X(md5INT)(m, p->ci - p->cr);
Chris@19 40 X(md5int)(m, X(alignment_of)(p->r0));
Chris@19 41 X(md5int)(m, X(alignment_of)(p->r1));
Chris@19 42 X(md5int)(m, X(alignment_of)(p->cr));
Chris@19 43 X(md5int)(m, X(alignment_of)(p->ci));
Chris@19 44 X(md5int)(m, p->kind);
Chris@19 45 X(tensor_md5)(m, p->sz);
Chris@19 46 X(tensor_md5)(m, p->vecsz);
Chris@19 47 }
Chris@19 48
Chris@19 49 static void print(const problem *ego_, printer *p)
Chris@19 50 {
Chris@19 51 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
Chris@19 52 p->print(p, "(rdft2 %d %d %T %T)",
Chris@19 53 (int)(ego->cr == ego->r0),
Chris@19 54 (int)(ego->kind),
Chris@19 55 ego->sz,
Chris@19 56 ego->vecsz);
Chris@19 57 }
Chris@19 58
Chris@19 59 static void recur(const iodim *dims, int rnk, R *I0, R *I1)
Chris@19 60 {
Chris@19 61 if (rnk == RNK_MINFTY)
Chris@19 62 return;
Chris@19 63 else if (rnk == 0)
Chris@19 64 I0[0] = K(0.0);
Chris@19 65 else if (rnk > 0) {
Chris@19 66 INT i, n = dims[0].n, is = dims[0].is;
Chris@19 67
Chris@19 68 if (rnk == 1) {
Chris@19 69 for (i = 0; i < n - 1; i += 2) {
Chris@19 70 *I0 = *I1 = K(0.0);
Chris@19 71 I0 += is; I1 += is;
Chris@19 72 }
Chris@19 73 if (i < n)
Chris@19 74 *I0 = K(0.0);
Chris@19 75 } else {
Chris@19 76 for (i = 0; i < n; ++i)
Chris@19 77 recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
Chris@19 78 }
Chris@19 79 }
Chris@19 80 }
Chris@19 81
Chris@19 82 static void vrecur(const iodim *vdims, int vrnk,
Chris@19 83 const iodim *dims, int rnk, R *I0, R *I1)
Chris@19 84 {
Chris@19 85 if (vrnk == RNK_MINFTY)
Chris@19 86 return;
Chris@19 87 else if (vrnk == 0)
Chris@19 88 recur(dims, rnk, I0, I1);
Chris@19 89 else if (vrnk > 0) {
Chris@19 90 INT i, n = vdims[0].n, is = vdims[0].is;
Chris@19 91
Chris@19 92 for (i = 0; i < n; ++i)
Chris@19 93 vrecur(vdims + 1, vrnk - 1,
Chris@19 94 dims, rnk, I0 + i * is, I1 + i * is);
Chris@19 95 }
Chris@19 96 }
Chris@19 97
Chris@19 98 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
Chris@19 99 {
Chris@19 100 switch (kind) {
Chris@19 101 case R2HC:
Chris@19 102 case HC2R:
Chris@19 103 return (real_n / 2) + 1;
Chris@19 104 case R2HCII:
Chris@19 105 case HC2RIII:
Chris@19 106 return (real_n + 1) / 2;
Chris@19 107 default:
Chris@19 108 /* can't happen */
Chris@19 109 A(0);
Chris@19 110 return 0;
Chris@19 111 }
Chris@19 112 }
Chris@19 113
Chris@19 114 static void zero(const problem *ego_)
Chris@19 115 {
Chris@19 116 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
Chris@19 117 if (R2HC_KINDP(ego->kind)) {
Chris@19 118 /* FIXME: can we avoid the double recursion somehow? */
Chris@19 119 vrecur(ego->vecsz->dims, ego->vecsz->rnk,
Chris@19 120 ego->sz->dims, ego->sz->rnk,
Chris@19 121 UNTAINT(ego->r0), UNTAINT(ego->r1));
Chris@19 122 } else {
Chris@19 123 tensor *sz;
Chris@19 124 tensor *sz2 = X(tensor_copy)(ego->sz);
Chris@19 125 int rnk = sz2->rnk;
Chris@19 126 if (rnk > 0) /* ~half as many complex outputs */
Chris@19 127 sz2->dims[rnk-1].n =
Chris@19 128 X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
Chris@19 129 sz = X(tensor_append)(ego->vecsz, sz2);
Chris@19 130 X(tensor_destroy)(sz2);
Chris@19 131 X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
Chris@19 132 X(tensor_destroy)(sz);
Chris@19 133 }
Chris@19 134 }
Chris@19 135
Chris@19 136 static const problem_adt padt =
Chris@19 137 {
Chris@19 138 PROBLEM_RDFT2,
Chris@19 139 hash,
Chris@19 140 zero,
Chris@19 141 print,
Chris@19 142 destroy
Chris@19 143 };
Chris@19 144
Chris@19 145 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
Chris@19 146 R *r0, R *r1, R *cr, R *ci,
Chris@19 147 rdft_kind kind)
Chris@19 148 {
Chris@19 149 problem_rdft2 *ego;
Chris@19 150
Chris@19 151 A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
Chris@19 152 A(X(tensor_kosherp)(sz));
Chris@19 153 A(X(tensor_kosherp)(vecsz));
Chris@19 154 A(FINITE_RNK(sz->rnk));
Chris@19 155
Chris@19 156 /* require in-place problems to use r0 == cr */
Chris@19 157 if (UNTAINT(r0) == UNTAINT(ci))
Chris@19 158 return X(mkproblem_unsolvable)();
Chris@19 159
Chris@19 160 /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
Chris@19 161 only if odd elements exist, which requires compressing the
Chris@19 162 tensors first */
Chris@19 163
Chris@19 164 if (UNTAINT(r0) == UNTAINT(cr))
Chris@19 165 r0 = cr = JOIN_TAINT(r0, cr);
Chris@19 166
Chris@19 167 ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
Chris@19 168
Chris@19 169 if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
Chris@19 170 tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
Chris@19 171 tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
Chris@19 172 tensor *szcc = X(tensor_compress)(szc);
Chris@19 173 if (szcc->rnk > 0)
Chris@19 174 ego->sz = X(tensor_append)(szcc, szr);
Chris@19 175 else
Chris@19 176 ego->sz = X(tensor_compress)(szr);
Chris@19 177 X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
Chris@19 178 } else {
Chris@19 179 ego->sz = X(tensor_compress)(sz);
Chris@19 180 }
Chris@19 181 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@19 182 ego->r0 = r0;
Chris@19 183 ego->r1 = r1;
Chris@19 184 ego->cr = cr;
Chris@19 185 ego->ci = ci;
Chris@19 186 ego->kind = kind;
Chris@19 187
Chris@19 188 A(FINITE_RNK(ego->sz->rnk));
Chris@19 189 return &(ego->super);
Chris@19 190
Chris@19 191 }
Chris@19 192
Chris@19 193 /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
Chris@19 194 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
Chris@19 195 R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
Chris@19 196 {
Chris@19 197 problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
Chris@19 198 X(tensor_destroy2)(vecsz, sz);
Chris@19 199 return p;
Chris@19 200 }
Chris@19 201
Chris@19 202 /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
Chris@19 203 Used by the API. */
Chris@19 204 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
Chris@19 205 R *r0, R *cr, R *ci, rdft_kind kind)
Chris@19 206 {
Chris@19 207 problem *p;
Chris@19 208 int rnk = sz->rnk;
Chris@19 209 R *r1;
Chris@19 210
Chris@19 211 if (rnk == 0)
Chris@19 212 r1 = r0;
Chris@19 213 else if (R2HC_KINDP(kind)) {
Chris@19 214 r1 = r0 + sz->dims[rnk-1].is;
Chris@19 215 sz->dims[rnk-1].is *= 2;
Chris@19 216 } else {
Chris@19 217 r1 = r0 + sz->dims[rnk-1].os;
Chris@19 218 sz->dims[rnk-1].os *= 2;
Chris@19 219 }
Chris@19 220
Chris@19 221 p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
Chris@19 222 X(tensor_destroy2)(vecsz, sz);
Chris@19 223 return p;
Chris@19 224 }