annotate fft/fftw/fftw-3.3.4/rdft/problem.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 #include "rdft.h"
Chris@19 23 #include <stddef.h>
Chris@19 24
Chris@19 25 static void destroy(problem *ego_)
Chris@19 26 {
Chris@19 27 problem_rdft *ego = (problem_rdft *) ego_;
Chris@19 28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
Chris@19 29 X(ifree0)(ego->kind);
Chris@19 30 #endif
Chris@19 31 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@19 32 X(ifree)(ego_);
Chris@19 33 }
Chris@19 34
Chris@19 35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
Chris@19 36 {
Chris@19 37 int i;
Chris@19 38 for (i = 0; i < rnk; ++i)
Chris@19 39 X(md5int)(m, kind[i]);
Chris@19 40 }
Chris@19 41
Chris@19 42 static void hash(const problem *p_, md5 *m)
Chris@19 43 {
Chris@19 44 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 45 X(md5puts)(m, "rdft");
Chris@19 46 X(md5int)(m, p->I == p->O);
Chris@19 47 kind_hash(m, p->kind, p->sz->rnk);
Chris@19 48 X(md5int)(m, X(alignment_of)(p->I));
Chris@19 49 X(md5int)(m, X(alignment_of)(p->O));
Chris@19 50 X(tensor_md5)(m, p->sz);
Chris@19 51 X(tensor_md5)(m, p->vecsz);
Chris@19 52 }
Chris@19 53
Chris@19 54 static void recur(const iodim *dims, int rnk, R *I)
Chris@19 55 {
Chris@19 56 if (rnk == RNK_MINFTY)
Chris@19 57 return;
Chris@19 58 else if (rnk == 0)
Chris@19 59 I[0] = K(0.0);
Chris@19 60 else if (rnk > 0) {
Chris@19 61 INT i, n = dims[0].n, is = dims[0].is;
Chris@19 62
Chris@19 63 if (rnk == 1) {
Chris@19 64 /* this case is redundant but faster */
Chris@19 65 for (i = 0; i < n; ++i)
Chris@19 66 I[i * is] = K(0.0);
Chris@19 67 } else {
Chris@19 68 for (i = 0; i < n; ++i)
Chris@19 69 recur(dims + 1, rnk - 1, I + i * is);
Chris@19 70 }
Chris@19 71 }
Chris@19 72 }
Chris@19 73
Chris@19 74 void X(rdft_zerotens)(tensor *sz, R *I)
Chris@19 75 {
Chris@19 76 recur(sz->dims, sz->rnk, I);
Chris@19 77 }
Chris@19 78
Chris@19 79 #define KSTR_LEN 8
Chris@19 80
Chris@19 81 const char *X(rdft_kind_str)(rdft_kind kind)
Chris@19 82 {
Chris@19 83 static const char kstr[][KSTR_LEN] = {
Chris@19 84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
Chris@19 85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
Chris@19 86 "dht",
Chris@19 87 "redft00", "redft01", "redft10", "redft11",
Chris@19 88 "rodft00", "rodft01", "rodft10", "rodft11"
Chris@19 89 };
Chris@19 90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
Chris@19 91 return kstr[kind];
Chris@19 92 }
Chris@19 93
Chris@19 94 static void print(const problem *ego_, printer *p)
Chris@19 95 {
Chris@19 96 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@19 97 int i;
Chris@19 98 p->print(p, "(rdft %d %D %T %T",
Chris@19 99 X(alignment_of)(ego->I),
Chris@19 100 (INT)(ego->O - ego->I),
Chris@19 101 ego->sz,
Chris@19 102 ego->vecsz);
Chris@19 103 for (i = 0; i < ego->sz->rnk; ++i)
Chris@19 104 p->print(p, " %d", (int)ego->kind[i]);
Chris@19 105 p->print(p, ")");
Chris@19 106 }
Chris@19 107
Chris@19 108 static void zero(const problem *ego_)
Chris@19 109 {
Chris@19 110 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@19 111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
Chris@19 112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
Chris@19 113 X(tensor_destroy)(sz);
Chris@19 114 }
Chris@19 115
Chris@19 116 static const problem_adt padt =
Chris@19 117 {
Chris@19 118 PROBLEM_RDFT,
Chris@19 119 hash,
Chris@19 120 zero,
Chris@19 121 print,
Chris@19 122 destroy
Chris@19 123 };
Chris@19 124
Chris@19 125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
Chris@19 126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
Chris@19 127 and suchlike from normalization and phases, although in principle
Chris@19 128 these constant factors from different dimensions could be combined. */
Chris@19 129 static int nontrivial(const iodim *d, rdft_kind kind)
Chris@19 130 {
Chris@19 131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
Chris@19 132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
Chris@19 133 }
Chris@19 134
Chris@19 135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
Chris@19 136 R *I, R *O, const rdft_kind *kind)
Chris@19 137 {
Chris@19 138 problem_rdft *ego;
Chris@19 139 int rnk = sz->rnk;
Chris@19 140 int i;
Chris@19 141
Chris@19 142 A(X(tensor_kosherp)(sz));
Chris@19 143 A(X(tensor_kosherp)(vecsz));
Chris@19 144 A(FINITE_RNK(sz->rnk));
Chris@19 145
Chris@19 146 if (UNTAINT(I) == UNTAINT(O))
Chris@19 147 I = O = JOIN_TAINT(I, O);
Chris@19 148
Chris@19 149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
Chris@19 150 return X(mkproblem_unsolvable)();
Chris@19 151
Chris@19 152 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@19 153 A(sz->dims[i].n > 0);
Chris@19 154 if (nontrivial(sz->dims + i, kind[i]))
Chris@19 155 ++rnk;
Chris@19 156 }
Chris@19 157
Chris@19 158 #if defined(STRUCT_HACK_KR)
Chris@19 159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@19 160 + sizeof(rdft_kind)
Chris@19 161 * (rnk > 0 ? rnk - 1 : 0), &padt);
Chris@19 162 #elif defined(STRUCT_HACK_C99)
Chris@19 163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@19 164 + sizeof(rdft_kind) * rnk, &padt);
Chris@19 165 #else
Chris@19 166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
Chris@19 167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS);
Chris@19 168 #endif
Chris@19 169
Chris@19 170 /* do compression and sorting as in X(tensor_compress), but take
Chris@19 171 transform kind into account (sigh) */
Chris@19 172 ego->sz = X(mktensor)(rnk);
Chris@19 173 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@19 174 if (nontrivial(sz->dims + i, kind[i])) {
Chris@19 175 ego->kind[rnk] = kind[i];
Chris@19 176 ego->sz->dims[rnk++] = sz->dims[i];
Chris@19 177 }
Chris@19 178 }
Chris@19 179 for (i = 0; i + 1 < rnk; ++i) {
Chris@19 180 int j;
Chris@19 181 for (j = i + 1; j < rnk; ++j)
Chris@19 182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
Chris@19 183 iodim dswap;
Chris@19 184 rdft_kind kswap;
Chris@19 185 dswap = ego->sz->dims[i];
Chris@19 186 ego->sz->dims[i] = ego->sz->dims[j];
Chris@19 187 ego->sz->dims[j] = dswap;
Chris@19 188 kswap = ego->kind[i];
Chris@19 189 ego->kind[i] = ego->kind[j];
Chris@19 190 ego->kind[j] = kswap;
Chris@19 191 }
Chris@19 192 }
Chris@19 193
Chris@19 194 for (i = 0; i < rnk; ++i)
Chris@19 195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
Chris@19 196 || ego->kind[i] == DHT
Chris@19 197 || ego->kind[i] == HC2R))
Chris@19 198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
Chris@19 199
Chris@19 200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@19 201 ego->I = I;
Chris@19 202 ego->O = O;
Chris@19 203
Chris@19 204 A(FINITE_RNK(ego->sz->rnk));
Chris@19 205
Chris@19 206 return &(ego->super);
Chris@19 207 }
Chris@19 208
Chris@19 209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
Chris@19 210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
Chris@19 211 R *I, R *O, const rdft_kind *kind)
Chris@19 212 {
Chris@19 213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
Chris@19 214 X(tensor_destroy2)(vecsz, sz);
Chris@19 215 return p;
Chris@19 216 }
Chris@19 217
Chris@19 218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
Chris@19 219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
Chris@19 220 R *I, R *O, rdft_kind kind)
Chris@19 221 {
Chris@19 222 A(sz->rnk <= 1);
Chris@19 223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
Chris@19 224 }
Chris@19 225
Chris@19 226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
Chris@19 227 R *I, R *O, rdft_kind kind)
Chris@19 228 {
Chris@19 229 A(sz->rnk <= 1);
Chris@19 230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
Chris@19 231 }
Chris@19 232
Chris@19 233 /* create a zero-dimensional problem */
Chris@19 234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
Chris@19 235 {
Chris@19 236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
Chris@19 237 (const rdft_kind *)0);
Chris@19 238 }