annotate fft/fftw/fftw-3.3.4/rdft/hc2hc.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 #include "hc2hc.h"
Chris@19 22
Chris@19 23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0;
Chris@19 24
Chris@19 25 typedef struct {
Chris@19 26 plan_rdft super;
Chris@19 27 plan *cld;
Chris@19 28 plan *cldw;
Chris@19 29 INT r;
Chris@19 30 } P;
Chris@19 31
Chris@19 32 static void apply_dit(const plan *ego_, R *I, R *O)
Chris@19 33 {
Chris@19 34 const P *ego = (const P *) ego_;
Chris@19 35 plan_rdft *cld;
Chris@19 36 plan_hc2hc *cldw;
Chris@19 37
Chris@19 38 cld = (plan_rdft *) ego->cld;
Chris@19 39 cld->apply(ego->cld, I, O);
Chris@19 40
Chris@19 41 cldw = (plan_hc2hc *) ego->cldw;
Chris@19 42 cldw->apply(ego->cldw, O);
Chris@19 43 }
Chris@19 44
Chris@19 45 static void apply_dif(const plan *ego_, R *I, R *O)
Chris@19 46 {
Chris@19 47 const P *ego = (const P *) ego_;
Chris@19 48 plan_rdft *cld;
Chris@19 49 plan_hc2hc *cldw;
Chris@19 50
Chris@19 51 cldw = (plan_hc2hc *) ego->cldw;
Chris@19 52 cldw->apply(ego->cldw, I);
Chris@19 53
Chris@19 54 cld = (plan_rdft *) ego->cld;
Chris@19 55 cld->apply(ego->cld, I, O);
Chris@19 56 }
Chris@19 57
Chris@19 58 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 59 {
Chris@19 60 P *ego = (P *) ego_;
Chris@19 61 X(plan_awake)(ego->cld, wakefulness);
Chris@19 62 X(plan_awake)(ego->cldw, wakefulness);
Chris@19 63 }
Chris@19 64
Chris@19 65 static void destroy(plan *ego_)
Chris@19 66 {
Chris@19 67 P *ego = (P *) ego_;
Chris@19 68 X(plan_destroy_internal)(ego->cldw);
Chris@19 69 X(plan_destroy_internal)(ego->cld);
Chris@19 70 }
Chris@19 71
Chris@19 72 static void print(const plan *ego_, printer *p)
Chris@19 73 {
Chris@19 74 const P *ego = (const P *) ego_;
Chris@19 75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))",
Chris@19 76 ego->super.apply == apply_dit ? "dit" : "dif",
Chris@19 77 ego->r, ego->cldw, ego->cld);
Chris@19 78 }
Chris@19 79
Chris@19 80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@19 81 {
Chris@19 82 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 83 INT r;
Chris@19 84
Chris@19 85 return (1
Chris@19 86 && p->sz->rnk == 1
Chris@19 87 && p->vecsz->rnk <= 1
Chris@19 88
Chris@19 89 && (/* either the problem is R2HC, which is solved by DIT */
Chris@19 90 (p->kind[0] == R2HC)
Chris@19 91 ||
Chris@19 92 /* or the problem is HC2R, in which case it is solved
Chris@19 93 by DIF, which destroys the input */
Chris@19 94 (p->kind[0] == HC2R &&
Chris@19 95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr))))
Chris@19 96
Chris@19 97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
Chris@19 98 && p->sz->dims[0].n > r);
Chris@19 99 }
Chris@19 100
Chris@19 101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@19 102 {
Chris@19 103 const problem_rdft *p;
Chris@19 104
Chris@19 105 if (!applicable0(ego, p_, plnr))
Chris@19 106 return 0;
Chris@19 107
Chris@19 108 p = (const problem_rdft *) p_;
Chris@19 109
Chris@19 110 return (0
Chris@19 111 || p->vecsz->rnk == 0
Chris@19 112 || !NO_VRECURSEP(plnr)
Chris@19 113 );
Chris@19 114 }
Chris@19 115
Chris@19 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 117 {
Chris@19 118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
Chris@19 119 const problem_rdft *p;
Chris@19 120 P *pln = 0;
Chris@19 121 plan *cld = 0, *cldw = 0;
Chris@19 122 INT n, r, m, v, ivs, ovs;
Chris@19 123 iodim *d;
Chris@19 124
Chris@19 125 static const plan_adt padt = {
Chris@19 126 X(rdft_solve), awake, print, destroy
Chris@19 127 };
Chris@19 128
Chris@19 129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr))
Chris@19 130 return (plan *) 0;
Chris@19 131
Chris@19 132 p = (const problem_rdft *) p_;
Chris@19 133 d = p->sz->dims;
Chris@19 134 n = d[0].n;
Chris@19 135 r = X(choose_radix)(ego->r, n);
Chris@19 136 m = n / r;
Chris@19 137
Chris@19 138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
Chris@19 139
Chris@19 140 switch (p->kind[0]) {
Chris@19 141 case R2HC:
Chris@19 142 cldw = ego->mkcldw(ego,
Chris@19 143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2,
Chris@19 144 p->O, plnr);
Chris@19 145 if (!cldw) goto nada;
Chris@19 146
Chris@19 147 cld = X(mkplan_d)(plnr,
Chris@19 148 X(mkproblem_rdft_d)(
Chris@19 149 X(mktensor_1d)(m, r * d[0].is, d[0].os),
Chris@19 150 X(mktensor_2d)(r, d[0].is, m * d[0].os,
Chris@19 151 v, ivs, ovs),
Chris@19 152 p->I, p->O, p->kind)
Chris@19 153 );
Chris@19 154 if (!cld) goto nada;
Chris@19 155
Chris@19 156 pln = MKPLAN_RDFT(P, &padt, apply_dit);
Chris@19 157 break;
Chris@19 158
Chris@19 159 case HC2R:
Chris@19 160 cldw = ego->mkcldw(ego,
Chris@19 161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2,
Chris@19 162 p->I, plnr);
Chris@19 163 if (!cldw) goto nada;
Chris@19 164
Chris@19 165 cld = X(mkplan_d)(plnr,
Chris@19 166 X(mkproblem_rdft_d)(
Chris@19 167 X(mktensor_1d)(m, d[0].is, r * d[0].os),
Chris@19 168 X(mktensor_2d)(r, m * d[0].is, d[0].os,
Chris@19 169 v, ivs, ovs),
Chris@19 170 p->I, p->O, p->kind)
Chris@19 171 );
Chris@19 172 if (!cld) goto nada;
Chris@19 173
Chris@19 174 pln = MKPLAN_RDFT(P, &padt, apply_dif);
Chris@19 175 break;
Chris@19 176
Chris@19 177 default:
Chris@19 178 A(0);
Chris@19 179 }
Chris@19 180
Chris@19 181 pln->cld = cld;
Chris@19 182 pln->cldw = cldw;
Chris@19 183 pln->r = r;
Chris@19 184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
Chris@19 185
Chris@19 186 /* inherit could_prune_now_p attribute from cldw */
Chris@19 187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
Chris@19 188
Chris@19 189 return &(pln->super.super);
Chris@19 190
Chris@19 191 nada:
Chris@19 192 X(plan_destroy_internal)(cldw);
Chris@19 193 X(plan_destroy_internal)(cld);
Chris@19 194 return (plan *) 0;
Chris@19 195 }
Chris@19 196
Chris@19 197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw)
Chris@19 198 {
Chris@19 199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
Chris@19 201 slv->r = r;
Chris@19 202 slv->mkcldw = mkcldw;
Chris@19 203 return slv;
Chris@19 204 }
Chris@19 205
Chris@19 206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply)
Chris@19 207 {
Chris@19 208 plan_hc2hc *ego;
Chris@19 209
Chris@19 210 ego = (plan_hc2hc *) X(mkplan)(size, adt);
Chris@19 211 ego->apply = apply;
Chris@19 212
Chris@19 213 return &(ego->super);
Chris@19 214 }