annotate fft/fftw/fftw-3.3.4/rdft/direct-r2r.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* direct RDFT solver, using r2r codelets */
Chris@19 23
Chris@19 24 #include "rdft.h"
Chris@19 25
Chris@19 26 typedef struct {
Chris@19 27 solver super;
Chris@19 28 const kr2r_desc *desc;
Chris@19 29 kr2r k;
Chris@19 30 } S;
Chris@19 31
Chris@19 32 typedef struct {
Chris@19 33 plan_rdft super;
Chris@19 34
Chris@19 35 INT vl, ivs, ovs;
Chris@19 36 stride is, os;
Chris@19 37 kr2r k;
Chris@19 38 const S *slv;
Chris@19 39 } P;
Chris@19 40
Chris@19 41 static void apply(const plan *ego_, R *I, R *O)
Chris@19 42 {
Chris@19 43 const P *ego = (const P *) ego_;
Chris@19 44 ASSERT_ALIGNED_DOUBLE;
Chris@19 45 ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
Chris@19 46 }
Chris@19 47
Chris@19 48 static void destroy(plan *ego_)
Chris@19 49 {
Chris@19 50 P *ego = (P *) ego_;
Chris@19 51 X(stride_destroy)(ego->is);
Chris@19 52 X(stride_destroy)(ego->os);
Chris@19 53 }
Chris@19 54
Chris@19 55 static void print(const plan *ego_, printer *p)
Chris@19 56 {
Chris@19 57 const P *ego = (const P *) ego_;
Chris@19 58 const S *s = ego->slv;
Chris@19 59
Chris@19 60 p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")",
Chris@19 61 X(rdft_kind_str)(s->desc->kind), s->desc->n,
Chris@19 62 ego->vl, s->desc->nam);
Chris@19 63 }
Chris@19 64
Chris@19 65 static int applicable(const solver *ego_, const problem *p_)
Chris@19 66 {
Chris@19 67 const S *ego = (const S *) ego_;
Chris@19 68 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 69 INT vl;
Chris@19 70 INT ivs, ovs;
Chris@19 71
Chris@19 72 return (
Chris@19 73 1
Chris@19 74 && p->sz->rnk == 1
Chris@19 75 && p->vecsz->rnk <= 1
Chris@19 76 && p->sz->dims[0].n == ego->desc->n
Chris@19 77 && p->kind[0] == ego->desc->kind
Chris@19 78
Chris@19 79 /* check strides etc */
Chris@19 80 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@19 81
Chris@19 82 && (0
Chris@19 83 /* can operate out-of-place */
Chris@19 84 || p->I != p->O
Chris@19 85
Chris@19 86 /* computing one transform */
Chris@19 87 || vl == 1
Chris@19 88
Chris@19 89 /* can operate in-place as long as strides are the same */
Chris@19 90 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@19 91 )
Chris@19 92 );
Chris@19 93 }
Chris@19 94
Chris@19 95 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 96 {
Chris@19 97 const S *ego = (const S *) ego_;
Chris@19 98 P *pln;
Chris@19 99 const problem_rdft *p;
Chris@19 100 iodim *d;
Chris@19 101
Chris@19 102 static const plan_adt padt = {
Chris@19 103 X(rdft_solve), X(null_awake), print, destroy
Chris@19 104 };
Chris@19 105
Chris@19 106 UNUSED(plnr);
Chris@19 107
Chris@19 108 if (!applicable(ego_, p_))
Chris@19 109 return (plan *)0;
Chris@19 110
Chris@19 111 p = (const problem_rdft *) p_;
Chris@19 112
Chris@19 113
Chris@19 114 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@19 115
Chris@19 116 d = p->sz->dims;
Chris@19 117
Chris@19 118 pln->k = ego->k;
Chris@19 119
Chris@19 120 pln->is = X(mkstride)(d->n, d->is);
Chris@19 121 pln->os = X(mkstride)(d->n, d->os);
Chris@19 122
Chris@19 123 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@19 124
Chris@19 125 pln->slv = ego;
Chris@19 126 X(ops_zero)(&pln->super.super.ops);
Chris@19 127 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
Chris@19 128 &ego->desc->ops,
Chris@19 129 &pln->super.super.ops);
Chris@19 130
Chris@19 131 pln->super.super.could_prune_now_p = 1;
Chris@19 132
Chris@19 133 return &(pln->super.super);
Chris@19 134 }
Chris@19 135
Chris@19 136 /* constructor */
Chris@19 137 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
Chris@19 138 {
Chris@19 139 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 140 S *slv = MKSOLVER(S, &sadt);
Chris@19 141 slv->k = k;
Chris@19 142 slv->desc = desc;
Chris@19 143 return &(slv->super);
Chris@19 144 }
Chris@19 145