annotate fft/fftw/fftw-3.3.4/rdft/direct-r2c.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* direct RDFT solver, using r2c codelets */
Chris@19 23
Chris@19 24 #include "rdft.h"
Chris@19 25
Chris@19 26 typedef struct {
Chris@19 27 solver super;
Chris@19 28 const kr2c_desc *desc;
Chris@19 29 kr2c k;
Chris@19 30 int bufferedp;
Chris@19 31 } S;
Chris@19 32
Chris@19 33 typedef struct {
Chris@19 34 plan_rdft super;
Chris@19 35
Chris@19 36 stride rs, csr, csi;
Chris@19 37 stride brs, bcsr, bcsi;
Chris@19 38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
Chris@19 39 kr2c k;
Chris@19 40 const S *slv;
Chris@19 41 } P;
Chris@19 42
Chris@19 43 /*************************************************************
Chris@19 44 Nonbuffered code
Chris@19 45 *************************************************************/
Chris@19 46 static void apply_r2hc(const plan *ego_, R *I, R *O)
Chris@19 47 {
Chris@19 48 const P *ego = (const P *) ego_;
Chris@19 49 ASSERT_ALIGNED_DOUBLE;
Chris@19 50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
Chris@19 51 ego->rs, ego->csr, ego->csi,
Chris@19 52 ego->vl, ego->ivs, ego->ovs);
Chris@19 53 }
Chris@19 54
Chris@19 55 static void apply_hc2r(const plan *ego_, R *I, R *O)
Chris@19 56 {
Chris@19 57 const P *ego = (const P *) ego_;
Chris@19 58 ASSERT_ALIGNED_DOUBLE;
Chris@19 59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
Chris@19 60 ego->rs, ego->csr, ego->csi,
Chris@19 61 ego->vl, ego->ivs, ego->ovs);
Chris@19 62 }
Chris@19 63
Chris@19 64 /*************************************************************
Chris@19 65 Buffered code
Chris@19 66 *************************************************************/
Chris@19 67 /* should not be 2^k to avoid associativity conflicts */
Chris@19 68 static INT compute_batchsize(INT radix)
Chris@19 69 {
Chris@19 70 /* round up to multiple of 4 */
Chris@19 71 radix += 3;
Chris@19 72 radix &= -4;
Chris@19 73
Chris@19 74 return (radix + 2);
Chris@19 75 }
Chris@19 76
Chris@19 77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
Chris@19 78 {
Chris@19 79 X(cpy2d_ci)(I, buf,
Chris@19 80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
Chris@19 81 batchsz, ego->ivs, 1, 1);
Chris@19 82
Chris@19 83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
Chris@19 84 /* transform directly to output */
Chris@19 85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@19 86 O, O + ego->ioffset,
Chris@19 87 ego->brs, ego->csr, ego->csi,
Chris@19 88 batchsz, 1, ego->ovs);
Chris@19 89 } else {
Chris@19 90 /* transform to buffer and copy back */
Chris@19 91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@19 92 buf, buf + ego->bioffset,
Chris@19 93 ego->brs, ego->bcsr, ego->bcsi,
Chris@19 94 batchsz, 1, 1);
Chris@19 95 X(cpy2d_co)(buf, O,
Chris@19 96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
Chris@19 97 batchsz, 1, ego->ovs, 1);
Chris@19 98 }
Chris@19 99 }
Chris@19 100
Chris@19 101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
Chris@19 102 {
Chris@19 103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
Chris@19 104 /* transform directly from input */
Chris@19 105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@19 106 I, I + ego->ioffset,
Chris@19 107 ego->brs, ego->csr, ego->csi,
Chris@19 108 batchsz, ego->ivs, 1);
Chris@19 109 } else {
Chris@19 110 /* copy into buffer and transform in place */
Chris@19 111 X(cpy2d_ci)(I, buf,
Chris@19 112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
Chris@19 113 batchsz, ego->ivs, 1, 1);
Chris@19 114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@19 115 buf, buf + ego->bioffset,
Chris@19 116 ego->brs, ego->bcsr, ego->bcsi,
Chris@19 117 batchsz, 1, 1);
Chris@19 118 }
Chris@19 119 X(cpy2d_co)(buf, O,
Chris@19 120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
Chris@19 121 batchsz, 1, ego->ovs, 1);
Chris@19 122 }
Chris@19 123
Chris@19 124 static void iterate(const P *ego, R *I, R *O,
Chris@19 125 void (*dobatch)(const P *ego, R *I, R *O,
Chris@19 126 R *buf, INT batchsz))
Chris@19 127 {
Chris@19 128 R *buf;
Chris@19 129 INT vl = ego->vl;
Chris@19 130 INT n = ego->n;
Chris@19 131 INT i;
Chris@19 132 INT batchsz = compute_batchsize(n);
Chris@19 133 size_t bufsz = n * batchsz * sizeof(R);
Chris@19 134
Chris@19 135 BUF_ALLOC(R *, buf, bufsz);
Chris@19 136
Chris@19 137 for (i = 0; i < vl - batchsz; i += batchsz) {
Chris@19 138 dobatch(ego, I, O, buf, batchsz);
Chris@19 139 I += batchsz * ego->ivs;
Chris@19 140 O += batchsz * ego->ovs;
Chris@19 141 }
Chris@19 142 dobatch(ego, I, O, buf, vl - i);
Chris@19 143
Chris@19 144 BUF_FREE(buf, bufsz);
Chris@19 145 }
Chris@19 146
Chris@19 147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
Chris@19 148 {
Chris@19 149 iterate((const P *) ego_, I, O, dobatch_r2hc);
Chris@19 150 }
Chris@19 151
Chris@19 152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
Chris@19 153 {
Chris@19 154 iterate((const P *) ego_, I, O, dobatch_hc2r);
Chris@19 155 }
Chris@19 156
Chris@19 157 static void destroy(plan *ego_)
Chris@19 158 {
Chris@19 159 P *ego = (P *) ego_;
Chris@19 160 X(stride_destroy)(ego->rs);
Chris@19 161 X(stride_destroy)(ego->csr);
Chris@19 162 X(stride_destroy)(ego->csi);
Chris@19 163 X(stride_destroy)(ego->brs);
Chris@19 164 X(stride_destroy)(ego->bcsr);
Chris@19 165 X(stride_destroy)(ego->bcsi);
Chris@19 166 }
Chris@19 167
Chris@19 168 static void print(const plan *ego_, printer *p)
Chris@19 169 {
Chris@19 170 const P *ego = (const P *) ego_;
Chris@19 171 const S *s = ego->slv;
Chris@19 172
Chris@19 173 if (ego->slv->bufferedp)
Chris@19 174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
Chris@19 175 X(rdft_kind_str)(s->desc->genus->kind),
Chris@19 176 /* hack */ WS(ego->bcsr, 1), ego->n,
Chris@19 177 ego->vl, s->desc->nam);
Chris@19 178
Chris@19 179 else
Chris@19 180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
Chris@19 181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
Chris@19 182 ego->vl, s->desc->nam);
Chris@19 183 }
Chris@19 184
Chris@19 185 static INT ioffset(rdft_kind kind, INT sz, INT s)
Chris@19 186 {
Chris@19 187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
Chris@19 188 }
Chris@19 189
Chris@19 190 static int applicable(const solver *ego_, const problem *p_)
Chris@19 191 {
Chris@19 192 const S *ego = (const S *) ego_;
Chris@19 193 const kr2c_desc *desc = ego->desc;
Chris@19 194 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 195 INT vl, ivs, ovs;
Chris@19 196
Chris@19 197 return (
Chris@19 198 1
Chris@19 199 && p->sz->rnk == 1
Chris@19 200 && p->vecsz->rnk <= 1
Chris@19 201 && p->sz->dims[0].n == desc->n
Chris@19 202 && p->kind[0] == desc->genus->kind
Chris@19 203
Chris@19 204 /* check strides etc */
Chris@19 205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@19 206
Chris@19 207 && (0
Chris@19 208 /* can operate out-of-place */
Chris@19 209 || p->I != p->O
Chris@19 210
Chris@19 211 /* computing one transform */
Chris@19 212 || vl == 1
Chris@19 213
Chris@19 214 /* can operate in-place as long as strides are the same */
Chris@19 215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@19 216 )
Chris@19 217 );
Chris@19 218 }
Chris@19 219
Chris@19 220 static int applicable_buf(const solver *ego_, const problem *p_)
Chris@19 221 {
Chris@19 222 const S *ego = (const S *) ego_;
Chris@19 223 const kr2c_desc *desc = ego->desc;
Chris@19 224 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 225 INT vl, ivs, ovs, batchsz;
Chris@19 226
Chris@19 227 return (
Chris@19 228 1
Chris@19 229 && p->sz->rnk == 1
Chris@19 230 && p->vecsz->rnk <= 1
Chris@19 231 && p->sz->dims[0].n == desc->n
Chris@19 232 && p->kind[0] == desc->genus->kind
Chris@19 233
Chris@19 234 /* check strides etc */
Chris@19 235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@19 236
Chris@19 237 && (batchsz = compute_batchsize(desc->n), 1)
Chris@19 238
Chris@19 239 && (0
Chris@19 240 /* can operate out-of-place */
Chris@19 241 || p->I != p->O
Chris@19 242
Chris@19 243 /* can operate in-place as long as strides are the same */
Chris@19 244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@19 245
Chris@19 246 /* can do it if the problem fits in the buffer, no matter
Chris@19 247 what the strides are */
Chris@19 248 || vl <= batchsz
Chris@19 249 )
Chris@19 250 );
Chris@19 251 }
Chris@19 252
Chris@19 253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 254 {
Chris@19 255 const S *ego = (const S *) ego_;
Chris@19 256 P *pln;
Chris@19 257 const problem_rdft *p;
Chris@19 258 iodim *d;
Chris@19 259 INT rs, cs, b, n;
Chris@19 260
Chris@19 261 static const plan_adt padt = {
Chris@19 262 X(rdft_solve), X(null_awake), print, destroy
Chris@19 263 };
Chris@19 264
Chris@19 265 UNUSED(plnr);
Chris@19 266
Chris@19 267 if (ego->bufferedp) {
Chris@19 268 if (!applicable_buf(ego_, p_))
Chris@19 269 return (plan *)0;
Chris@19 270 } else {
Chris@19 271 if (!applicable(ego_, p_))
Chris@19 272 return (plan *)0;
Chris@19 273 }
Chris@19 274
Chris@19 275 p = (const problem_rdft *) p_;
Chris@19 276
Chris@19 277 if (R2HC_KINDP(p->kind[0])) {
Chris@19 278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
Chris@19 279 pln = MKPLAN_RDFT(P, &padt,
Chris@19 280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
Chris@19 281 } else {
Chris@19 282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
Chris@19 283 pln = MKPLAN_RDFT(P, &padt,
Chris@19 284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
Chris@19 285 }
Chris@19 286
Chris@19 287 d = p->sz->dims;
Chris@19 288 n = d[0].n;
Chris@19 289
Chris@19 290 pln->k = ego->k;
Chris@19 291 pln->n = n;
Chris@19 292
Chris@19 293 pln->rs0 = rs;
Chris@19 294 pln->rs = X(mkstride)(n, 2 * rs);
Chris@19 295 pln->csr = X(mkstride)(n, cs);
Chris@19 296 pln->csi = X(mkstride)(n, -cs);
Chris@19 297 pln->ioffset = ioffset(p->kind[0], n, cs);
Chris@19 298
Chris@19 299 b = compute_batchsize(n);
Chris@19 300 pln->brs = X(mkstride)(n, 2 * b);
Chris@19 301 pln->bcsr = X(mkstride)(n, b);
Chris@19 302 pln->bcsi = X(mkstride)(n, -b);
Chris@19 303 pln->bioffset = ioffset(p->kind[0], n, b);
Chris@19 304
Chris@19 305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@19 306
Chris@19 307 pln->slv = ego;
Chris@19 308 X(ops_zero)(&pln->super.super.ops);
Chris@19 309
Chris@19 310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
Chris@19 311 &ego->desc->ops,
Chris@19 312 &pln->super.super.ops);
Chris@19 313
Chris@19 314 if (ego->bufferedp)
Chris@19 315 pln->super.super.ops.other += 2 * n * pln->vl;
Chris@19 316
Chris@19 317 pln->super.super.could_prune_now_p = !ego->bufferedp;
Chris@19 318
Chris@19 319 return &(pln->super.super);
Chris@19 320 }
Chris@19 321
Chris@19 322 /* constructor */
Chris@19 323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
Chris@19 324 {
Chris@19 325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 326 S *slv = MKSOLVER(S, &sadt);
Chris@19 327 slv->k = k;
Chris@19 328 slv->desc = desc;
Chris@19 329 slv->bufferedp = bufferedp;
Chris@19 330 return &(slv->super);
Chris@19 331 }
Chris@19 332
Chris@19 333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
Chris@19 334 {
Chris@19 335 return mksolver(k, desc, 0);
Chris@19 336 }
Chris@19 337
Chris@19 338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
Chris@19 339 {
Chris@19 340 return mksolver(k, desc, 1);
Chris@19 341 }