annotate fft/fftw/fftw-3.3.4/rdft/dht-r2hc.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* Solve a DHT problem (Discrete Hartley Transform) via post-processing
Chris@19 23 of an R2HC problem. */
Chris@19 24
Chris@19 25 #include "rdft.h"
Chris@19 26
Chris@19 27 typedef struct {
Chris@19 28 solver super;
Chris@19 29 } S;
Chris@19 30
Chris@19 31 typedef struct {
Chris@19 32 plan_rdft super;
Chris@19 33 plan *cld;
Chris@19 34 INT os;
Chris@19 35 INT n;
Chris@19 36 } P;
Chris@19 37
Chris@19 38 static void apply(const plan *ego_, R *I, R *O)
Chris@19 39 {
Chris@19 40 const P *ego = (const P *) ego_;
Chris@19 41 INT os = ego->os;
Chris@19 42 INT i, n = ego->n;
Chris@19 43
Chris@19 44 {
Chris@19 45 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 46 cld->apply((plan *) cld, I, O);
Chris@19 47 }
Chris@19 48
Chris@19 49 for (i = 1; i < n - i; ++i) {
Chris@19 50 E a, b;
Chris@19 51 a = O[os * i];
Chris@19 52 b = O[os * (n - i)];
Chris@19 53 #if FFT_SIGN == -1
Chris@19 54 O[os * i] = a - b;
Chris@19 55 O[os * (n - i)] = a + b;
Chris@19 56 #else
Chris@19 57 O[os * i] = a + b;
Chris@19 58 O[os * (n - i)] = a - b;
Chris@19 59 #endif
Chris@19 60 }
Chris@19 61 }
Chris@19 62
Chris@19 63 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 64 {
Chris@19 65 P *ego = (P *) ego_;
Chris@19 66 X(plan_awake)(ego->cld, wakefulness);
Chris@19 67 }
Chris@19 68
Chris@19 69 static void destroy(plan *ego_)
Chris@19 70 {
Chris@19 71 P *ego = (P *) ego_;
Chris@19 72 X(plan_destroy_internal)(ego->cld);
Chris@19 73 }
Chris@19 74
Chris@19 75 static void print(const plan *ego_, printer *p)
Chris@19 76 {
Chris@19 77 const P *ego = (const P *) ego_;
Chris@19 78 p->print(p, "(dht-r2hc-%D%(%p%))", ego->n, ego->cld);
Chris@19 79 }
Chris@19 80
Chris@19 81 static int applicable0(const problem *p_, const planner *plnr)
Chris@19 82 {
Chris@19 83 const problem_rdft *p = (const problem_rdft *) p_;
Chris@19 84 return (1
Chris@19 85 && !NO_DHT_R2HCP(plnr)
Chris@19 86 && p->sz->rnk == 1
Chris@19 87 && p->vecsz->rnk == 0
Chris@19 88 && p->kind[0] == DHT
Chris@19 89 );
Chris@19 90 }
Chris@19 91
Chris@19 92 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@19 93 {
Chris@19 94 UNUSED(ego);
Chris@19 95 return (!NO_SLOWP(plnr) && applicable0(p, plnr));
Chris@19 96 }
Chris@19 97
Chris@19 98 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 99 {
Chris@19 100 P *pln;
Chris@19 101 const problem_rdft *p;
Chris@19 102 plan *cld;
Chris@19 103
Chris@19 104 static const plan_adt padt = {
Chris@19 105 X(rdft_solve), awake, print, destroy
Chris@19 106 };
Chris@19 107
Chris@19 108 if (!applicable(ego_, p_, plnr))
Chris@19 109 return (plan *)0;
Chris@19 110
Chris@19 111 p = (const problem_rdft *) p_;
Chris@19 112
Chris@19 113 /* NO_DHT_R2HC stops infinite loops with rdft-dht.c */
Chris@19 114 cld = X(mkplan_f_d)(plnr,
Chris@19 115 X(mkproblem_rdft_1)(p->sz, p->vecsz,
Chris@19 116 p->I, p->O, R2HC),
Chris@19 117 NO_DHT_R2HC, 0, 0);
Chris@19 118 if (!cld) return (plan *)0;
Chris@19 119
Chris@19 120 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@19 121
Chris@19 122 pln->n = p->sz->dims[0].n;
Chris@19 123 pln->os = p->sz->dims[0].os;
Chris@19 124 pln->cld = cld;
Chris@19 125
Chris@19 126 pln->super.super.ops = cld->ops;
Chris@19 127 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
Chris@19 128 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
Chris@19 129
Chris@19 130 return &(pln->super.super);
Chris@19 131 }
Chris@19 132
Chris@19 133 /* constructor */
Chris@19 134 static solver *mksolver(void)
Chris@19 135 {
Chris@19 136 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@19 137 S *slv = MKSOLVER(S, &sadt);
Chris@19 138 return &(slv->super);
Chris@19 139 }
Chris@19 140
Chris@19 141 void X(dht_r2hc_register)(planner *p)
Chris@19 142 {
Chris@19 143 REGISTER_SOLVER(p, mksolver());
Chris@19 144 }