annotate fft/fftw/fftw-3.3.4/libbench2/verify-rdft2.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 #include "verify.h"
Chris@19 23
Chris@19 24 /* copy real A into real B, using output stride of A and input stride of B */
Chris@19 25 typedef struct {
Chris@19 26 dotens2_closure k;
Chris@19 27 R *ra;
Chris@19 28 R *rb;
Chris@19 29 } cpyr_closure;
Chris@19 30
Chris@19 31 static void cpyr0(dotens2_closure *k_,
Chris@19 32 int indxa, int ondxa, int indxb, int ondxb)
Chris@19 33 {
Chris@19 34 cpyr_closure *k = (cpyr_closure *)k_;
Chris@19 35 k->rb[indxb] = k->ra[ondxa];
Chris@19 36 UNUSED(indxa); UNUSED(ondxb);
Chris@19 37 }
Chris@19 38
Chris@19 39 static void cpyr(R *ra, const bench_tensor *sza,
Chris@19 40 R *rb, const bench_tensor *szb)
Chris@19 41 {
Chris@19 42 cpyr_closure k;
Chris@19 43 k.k.apply = cpyr0;
Chris@19 44 k.ra = ra; k.rb = rb;
Chris@19 45 bench_dotens2(sza, szb, &k.k);
Chris@19 46 }
Chris@19 47
Chris@19 48 /* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
Chris@19 49 of A and input stride of B. Only copies non-redundant half; other
Chris@19 50 half must be copied via mkhermitian. */
Chris@19 51 typedef struct {
Chris@19 52 dotens2_closure k;
Chris@19 53 int n;
Chris@19 54 int as;
Chris@19 55 int scalea;
Chris@19 56 R *ra, *ia;
Chris@19 57 R *rb, *ib;
Chris@19 58 } cpyhc2_closure;
Chris@19 59
Chris@19 60 static void cpyhc20(dotens2_closure *k_,
Chris@19 61 int indxa, int ondxa, int indxb, int ondxb)
Chris@19 62 {
Chris@19 63 cpyhc2_closure *k = (cpyhc2_closure *)k_;
Chris@19 64 int i, n = k->n;
Chris@19 65 int scalea = k->scalea;
Chris@19 66 int as = k->as * scalea;
Chris@19 67 R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
Chris@19 68 R *rb = k->rb + indxb, *ib = k->ib + indxb;
Chris@19 69 UNUSED(indxa); UNUSED(ondxb);
Chris@19 70
Chris@19 71 for (i = 0; i < n/2 + 1; ++i) {
Chris@19 72 rb[2*i] = ra[as*i];
Chris@19 73 ib[2*i] = ia[as*i];
Chris@19 74 }
Chris@19 75 }
Chris@19 76
Chris@19 77 static void cpyhc2(R *ra, R *ia,
Chris@19 78 const bench_tensor *sza, const bench_tensor *vecsza,
Chris@19 79 int scalea,
Chris@19 80 R *rb, R *ib, const bench_tensor *szb)
Chris@19 81 {
Chris@19 82 cpyhc2_closure k;
Chris@19 83 BENCH_ASSERT(sza->rnk <= 1);
Chris@19 84 k.k.apply = cpyhc20;
Chris@19 85 k.n = tensor_sz(sza);
Chris@19 86 k.scalea = scalea;
Chris@19 87 if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
Chris@19 88 k.as = 0;
Chris@19 89 else
Chris@19 90 k.as = sza->dims[0].os;
Chris@19 91 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
Chris@19 92 bench_dotens2(vecsza, szb, &k.k);
Chris@19 93 }
Chris@19 94
Chris@19 95 /* icpyhc2 is the inverse of cpyhc2 */
Chris@19 96
Chris@19 97 static void icpyhc20(dotens2_closure *k_,
Chris@19 98 int indxa, int ondxa, int indxb, int ondxb)
Chris@19 99 {
Chris@19 100 cpyhc2_closure *k = (cpyhc2_closure *)k_;
Chris@19 101 int i, n = k->n;
Chris@19 102 int scalea = k->scalea;
Chris@19 103 int as = k->as * scalea;
Chris@19 104 R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
Chris@19 105 R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
Chris@19 106 UNUSED(ondxa); UNUSED(indxb);
Chris@19 107
Chris@19 108 for (i = 0; i < n/2 + 1; ++i) {
Chris@19 109 ra[as*i] = rb[2*i];
Chris@19 110 ia[as*i] = ib[2*i];
Chris@19 111 }
Chris@19 112 }
Chris@19 113
Chris@19 114 static void icpyhc2(R *ra, R *ia,
Chris@19 115 const bench_tensor *sza, const bench_tensor *vecsza,
Chris@19 116 int scalea,
Chris@19 117 R *rb, R *ib, const bench_tensor *szb)
Chris@19 118 {
Chris@19 119 cpyhc2_closure k;
Chris@19 120 BENCH_ASSERT(sza->rnk <= 1);
Chris@19 121 k.k.apply = icpyhc20;
Chris@19 122 k.n = tensor_sz(sza);
Chris@19 123 k.scalea = scalea;
Chris@19 124 if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
Chris@19 125 k.as = 0;
Chris@19 126 else
Chris@19 127 k.as = sza->dims[0].is;
Chris@19 128 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
Chris@19 129 bench_dotens2(vecsza, szb, &k.k);
Chris@19 130 }
Chris@19 131
Chris@19 132 typedef struct {
Chris@19 133 dofft_closure k;
Chris@19 134 bench_problem *p;
Chris@19 135 } dofft_rdft2_closure;
Chris@19 136
Chris@19 137 static void rdft2_apply(dofft_closure *k_,
Chris@19 138 bench_complex *in, bench_complex *out)
Chris@19 139 {
Chris@19 140 dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
Chris@19 141 bench_problem *p = k->p;
Chris@19 142 bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
Chris@19 143 bench_tensor *probsz2, *totalsz2, *pckdsz2;
Chris@19 144 bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
Chris@19 145 bench_real *ri, *ii, *ro, *io;
Chris@19 146 int n2, totalscale;
Chris@19 147
Chris@19 148 totalsz = tensor_append(p->vecsz, p->sz);
Chris@19 149 pckdsz = verify_pack(totalsz, 2);
Chris@19 150 n2 = tensor_sz(totalsz);
Chris@19 151 if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
Chris@19 152 n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) *
Chris@19 153 (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
Chris@19 154 ri = (bench_real *) p->in;
Chris@19 155 ro = (bench_real *) p->out;
Chris@19 156
Chris@19 157 if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
Chris@19 158 probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
Chris@19 159 totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
Chris@19 160 pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
Chris@19 161 }
Chris@19 162 else {
Chris@19 163 probsz2 = mktensor(0);
Chris@19 164 totalsz2 = tensor_copy(totalsz);
Chris@19 165 pckdsz2 = tensor_copy(pckdsz);
Chris@19 166 }
Chris@19 167
Chris@19 168 totalsz_swap = tensor_copy_swapio(totalsz);
Chris@19 169 pckdsz_swap = tensor_copy_swapio(pckdsz);
Chris@19 170 totalsz2_swap = tensor_copy_swapio(totalsz2);
Chris@19 171 pckdsz2_swap = tensor_copy_swapio(pckdsz2);
Chris@19 172 probsz2_swap = tensor_copy_swapio(probsz2);
Chris@19 173
Chris@19 174 /* confusion: the stride is the distance between complex elements
Chris@19 175 when using interleaved format, but it is the distance between
Chris@19 176 real elements when using split format */
Chris@19 177 if (p->split) {
Chris@19 178 ii = p->ini ? (bench_real *) p->ini : ri + n2;
Chris@19 179 io = p->outi ? (bench_real *) p->outi : ro + n2;
Chris@19 180 totalscale = 1;
Chris@19 181 } else {
Chris@19 182 ii = p->ini ? (bench_real *) p->ini : ri + 1;
Chris@19 183 io = p->outi ? (bench_real *) p->outi : ro + 1;
Chris@19 184 totalscale = 2;
Chris@19 185 }
Chris@19 186
Chris@19 187 if (p->sign < 0) { /* R2HC */
Chris@19 188 int N, vN, i;
Chris@19 189 cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
Chris@19 190 after_problem_rcopy_from(p, ri);
Chris@19 191 doit(1, p);
Chris@19 192 after_problem_hccopy_to(p, ro, io);
Chris@19 193 if (k->k.recopy_input)
Chris@19 194 cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
Chris@19 195 cpyhc2(ro, io, probsz2, totalsz2, totalscale,
Chris@19 196 &c_re(out[0]), &c_im(out[0]), pckdsz2);
Chris@19 197 N = tensor_sz(p->sz);
Chris@19 198 vN = tensor_sz(p->vecsz);
Chris@19 199 for (i = 0; i < vN; ++i)
Chris@19 200 mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
Chris@19 201 }
Chris@19 202 else { /* HC2R */
Chris@19 203 icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
Chris@19 204 &c_re(in[0]), &c_im(in[0]), pckdsz2);
Chris@19 205 after_problem_hccopy_from(p, ri, ii);
Chris@19 206 doit(1, p);
Chris@19 207 after_problem_rcopy_to(p, ro);
Chris@19 208 if (k->k.recopy_input)
Chris@19 209 cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
Chris@19 210 &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
Chris@19 211 mkreal(out, tensor_sz(pckdsz));
Chris@19 212 cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
Chris@19 213 }
Chris@19 214
Chris@19 215 tensor_destroy(totalsz);
Chris@19 216 tensor_destroy(pckdsz);
Chris@19 217 tensor_destroy(totalsz_swap);
Chris@19 218 tensor_destroy(pckdsz_swap);
Chris@19 219 tensor_destroy(probsz2);
Chris@19 220 tensor_destroy(totalsz2);
Chris@19 221 tensor_destroy(pckdsz2);
Chris@19 222 tensor_destroy(probsz2_swap);
Chris@19 223 tensor_destroy(totalsz2_swap);
Chris@19 224 tensor_destroy(pckdsz2_swap);
Chris@19 225 }
Chris@19 226
Chris@19 227 void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
Chris@19 228 {
Chris@19 229 C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
Chris@19 230 int n, vecn, N;
Chris@19 231 dofft_rdft2_closure k;
Chris@19 232
Chris@19 233 BENCH_ASSERT(p->kind == PROBLEM_REAL);
Chris@19 234
Chris@19 235 if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
Chris@19 236 return; /* give up */
Chris@19 237
Chris@19 238 k.k.apply = rdft2_apply;
Chris@19 239 k.k.recopy_input = 0;
Chris@19 240 k.p = p;
Chris@19 241
Chris@19 242 if (rounds == 0)
Chris@19 243 rounds = 20; /* default value */
Chris@19 244
Chris@19 245 n = tensor_sz(p->sz);
Chris@19 246 vecn = tensor_sz(p->vecsz);
Chris@19 247 N = n * vecn;
Chris@19 248
Chris@19 249 inA = (C *) bench_malloc(N * sizeof(C));
Chris@19 250 inB = (C *) bench_malloc(N * sizeof(C));
Chris@19 251 inC = (C *) bench_malloc(N * sizeof(C));
Chris@19 252 outA = (C *) bench_malloc(N * sizeof(C));
Chris@19 253 outB = (C *) bench_malloc(N * sizeof(C));
Chris@19 254 outC = (C *) bench_malloc(N * sizeof(C));
Chris@19 255 tmp = (C *) bench_malloc(N * sizeof(C));
Chris@19 256
Chris@19 257 e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
Chris@19 258 tmp, rounds, tol);
Chris@19 259 e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
Chris@19 260 tmp, rounds, tol);
Chris@19 261
Chris@19 262 e->s = 0.0;
Chris@19 263 if (p->sign < 0)
Chris@19 264 e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
Chris@19 265 inA, inB, outA, outB,
Chris@19 266 tmp, rounds, tol, TIME_SHIFT));
Chris@19 267 else
Chris@19 268 e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
Chris@19 269 inA, inB, outA, outB,
Chris@19 270 tmp, rounds, tol, FREQ_SHIFT));
Chris@19 271
Chris@19 272 if (!p->in_place && !p->destroy_input)
Chris@19 273 preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
Chris@19 274 N, inA, inB, outB, rounds);
Chris@19 275
Chris@19 276 bench_free(tmp);
Chris@19 277 bench_free(outC);
Chris@19 278 bench_free(outB);
Chris@19 279 bench_free(outA);
Chris@19 280 bench_free(inC);
Chris@19 281 bench_free(inB);
Chris@19 282 bench_free(inA);
Chris@19 283 }
Chris@19 284
Chris@19 285 void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
Chris@19 286 double t[6])
Chris@19 287 {
Chris@19 288 dofft_rdft2_closure k;
Chris@19 289 int n;
Chris@19 290 C *a, *b;
Chris@19 291
Chris@19 292 BENCH_ASSERT(p->kind == PROBLEM_REAL);
Chris@19 293 BENCH_ASSERT(p->sz->rnk == 1);
Chris@19 294 BENCH_ASSERT(p->vecsz->rnk == 0);
Chris@19 295
Chris@19 296 k.k.apply = rdft2_apply;
Chris@19 297 k.k.recopy_input = 0;
Chris@19 298 k.p = p;
Chris@19 299 n = tensor_sz(p->sz);
Chris@19 300
Chris@19 301 a = (C *) bench_malloc(n * sizeof(C));
Chris@19 302 b = (C *) bench_malloc(n * sizeof(C));
Chris@19 303 accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign,
Chris@19 304 n, a, b, rounds, impulse_rounds, t);
Chris@19 305 bench_free(b);
Chris@19 306 bench_free(a);
Chris@19 307 }