annotate fft/fftw/fftw-3.3.4/libbench2/verify-r2r.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
Chris@19 22 general for all of the r2r variants...oh well, for now */
Chris@19 23
Chris@19 24 #include "verify.h"
Chris@19 25 #include <math.h>
Chris@19 26 #include <stdlib.h>
Chris@19 27 #include <stdio.h>
Chris@19 28
Chris@19 29 typedef struct {
Chris@19 30 bench_problem *p;
Chris@19 31 bench_tensor *probsz;
Chris@19 32 bench_tensor *totalsz;
Chris@19 33 bench_tensor *pckdsz;
Chris@19 34 bench_tensor *pckdvecsz;
Chris@19 35 } info;
Chris@19 36
Chris@19 37 /*
Chris@19 38 * Utility functions:
Chris@19 39 */
Chris@19 40
Chris@19 41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
Chris@19 42 static double dmin(double x, double y) { return (x < y) ? x : y; }
Chris@19 43
Chris@19 44 static double raerror(R *a, R *b, int n)
Chris@19 45 {
Chris@19 46 if (n > 0) {
Chris@19 47 /* compute the relative Linf error */
Chris@19 48 double e = 0.0, mag = 0.0;
Chris@19 49 int i;
Chris@19 50
Chris@19 51 for (i = 0; i < n; ++i) {
Chris@19 52 e = dmax(e, dabs(a[i] - b[i]));
Chris@19 53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
Chris@19 54 }
Chris@19 55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
Chris@19 56 e = 0.0;
Chris@19 57 else
Chris@19 58 e /= mag;
Chris@19 59
Chris@19 60 #ifdef HAVE_ISNAN
Chris@19 61 BENCH_ASSERT(!isnan(e));
Chris@19 62 #endif
Chris@19 63 return e;
Chris@19 64 } else
Chris@19 65 return 0.0;
Chris@19 66 }
Chris@19 67
Chris@19 68 #define by2pi(m, n) ((K2PI * (m)) / (n))
Chris@19 69
Chris@19 70 /*
Chris@19 71 * Improve accuracy by reducing x to range [0..1/8]
Chris@19 72 * before multiplication by 2 * PI.
Chris@19 73 */
Chris@19 74
Chris@19 75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
Chris@19 76 {
Chris@19 77 /* waiting for C to get tail recursion... */
Chris@19 78 trigreal half_n = n * 0.5;
Chris@19 79 trigreal quarter_n = half_n * 0.5;
Chris@19 80 trigreal eighth_n = quarter_n * 0.5;
Chris@19 81 trigreal sgn = 1.0;
Chris@19 82
Chris@19 83 if (sinp) goto sin;
Chris@19 84 cos:
Chris@19 85 if (m < 0) { m = -m; /* goto cos; */ }
Chris@19 86 if (m > half_n) { m = n - m; goto cos; }
Chris@19 87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
Chris@19 88 return sgn * COS(by2pi(m, n));
Chris@19 89
Chris@19 90 msin:
Chris@19 91 sgn = -sgn;
Chris@19 92 sin:
Chris@19 93 if (m < 0) { m = -m; goto msin; }
Chris@19 94 if (m > half_n) { m = n - m; goto msin; }
Chris@19 95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
Chris@19 96 return sgn * SIN(by2pi(m, n));
Chris@19 97 }
Chris@19 98
Chris@19 99 static trigreal cos2pi(int m, int n)
Chris@19 100 {
Chris@19 101 return bench_sincos((trigreal)m, (trigreal)n, 0);
Chris@19 102 }
Chris@19 103
Chris@19 104 static trigreal sin2pi(int m, int n)
Chris@19 105 {
Chris@19 106 return bench_sincos((trigreal)m, (trigreal)n, 1);
Chris@19 107 }
Chris@19 108
Chris@19 109 static trigreal cos00(int i, int j, int n)
Chris@19 110 {
Chris@19 111 return cos2pi(i * j, n);
Chris@19 112 }
Chris@19 113
Chris@19 114 static trigreal cos01(int i, int j, int n)
Chris@19 115 {
Chris@19 116 return cos00(i, 2*j + 1, 2*n);
Chris@19 117 }
Chris@19 118
Chris@19 119 static trigreal cos10(int i, int j, int n)
Chris@19 120 {
Chris@19 121 return cos00(2*i + 1, j, 2*n);
Chris@19 122 }
Chris@19 123
Chris@19 124 static trigreal cos11(int i, int j, int n)
Chris@19 125 {
Chris@19 126 return cos00(2*i + 1, 2*j + 1, 4*n);
Chris@19 127 }
Chris@19 128
Chris@19 129 static trigreal sin00(int i, int j, int n)
Chris@19 130 {
Chris@19 131 return sin2pi(i * j, n);
Chris@19 132 }
Chris@19 133
Chris@19 134 static trigreal sin01(int i, int j, int n)
Chris@19 135 {
Chris@19 136 return sin00(i, 2*j + 1, 2*n);
Chris@19 137 }
Chris@19 138
Chris@19 139 static trigreal sin10(int i, int j, int n)
Chris@19 140 {
Chris@19 141 return sin00(2*i + 1, j, 2*n);
Chris@19 142 }
Chris@19 143
Chris@19 144 static trigreal sin11(int i, int j, int n)
Chris@19 145 {
Chris@19 146 return sin00(2*i + 1, 2*j + 1, 4*n);
Chris@19 147 }
Chris@19 148
Chris@19 149 static trigreal realhalf(int i, int j, int n)
Chris@19 150 {
Chris@19 151 UNUSED(i);
Chris@19 152 if (j <= n - j)
Chris@19 153 return 1.0;
Chris@19 154 else
Chris@19 155 return 0.0;
Chris@19 156 }
Chris@19 157
Chris@19 158 static trigreal coshalf(int i, int j, int n)
Chris@19 159 {
Chris@19 160 if (j <= n - j)
Chris@19 161 return cos00(i, j, n);
Chris@19 162 else
Chris@19 163 return cos00(i, n - j, n);
Chris@19 164 }
Chris@19 165
Chris@19 166 static trigreal unity(int i, int j, int n)
Chris@19 167 {
Chris@19 168 UNUSED(i);
Chris@19 169 UNUSED(j);
Chris@19 170 UNUSED(n);
Chris@19 171 return 1.0;
Chris@19 172 }
Chris@19 173
Chris@19 174 typedef trigreal (*trigfun)(int, int, int);
Chris@19 175
Chris@19 176 static void rarand(R *a, int n)
Chris@19 177 {
Chris@19 178 int i;
Chris@19 179
Chris@19 180 /* generate random inputs */
Chris@19 181 for (i = 0; i < n; ++i) {
Chris@19 182 a[i] = mydrand();
Chris@19 183 }
Chris@19 184 }
Chris@19 185
Chris@19 186 /* C = A + B */
Chris@19 187 static void raadd(R *c, R *a, R *b, int n)
Chris@19 188 {
Chris@19 189 int i;
Chris@19 190
Chris@19 191 for (i = 0; i < n; ++i) {
Chris@19 192 c[i] = a[i] + b[i];
Chris@19 193 }
Chris@19 194 }
Chris@19 195
Chris@19 196 /* C = A - B */
Chris@19 197 static void rasub(R *c, R *a, R *b, int n)
Chris@19 198 {
Chris@19 199 int i;
Chris@19 200
Chris@19 201 for (i = 0; i < n; ++i) {
Chris@19 202 c[i] = a[i] - b[i];
Chris@19 203 }
Chris@19 204 }
Chris@19 205
Chris@19 206 /* B = rotate left A + rotate right A */
Chris@19 207 static void rarolr(R *b, R *a, int n, int nb, int na,
Chris@19 208 r2r_kind_t k)
Chris@19 209 {
Chris@19 210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
Chris@19 211 int i, ib, ia;
Chris@19 212
Chris@19 213 for (ib = 0; ib < nb; ++ib) {
Chris@19 214 for (i = 0; i < n - 1; ++i)
Chris@19 215 for (ia = 0; ia < na; ++ia)
Chris@19 216 b[(ib * n + i) * na + ia] =
Chris@19 217 a[(ib * n + i + 1) * na + ia];
Chris@19 218
Chris@19 219 /* ugly switch to do boundary conditions for various r2r types */
Chris@19 220 switch (k) {
Chris@19 221 /* periodic boundaries */
Chris@19 222 case R2R_DHT:
Chris@19 223 case R2R_R2HC:
Chris@19 224 for (ia = 0; ia < na; ++ia) {
Chris@19 225 b[(ib * n + n - 1) * na + ia] =
Chris@19 226 a[(ib * n + 0) * na + ia];
Chris@19 227 b[(ib * n + 0) * na + ia] +=
Chris@19 228 a[(ib * n + n - 1) * na + ia];
Chris@19 229 }
Chris@19 230 break;
Chris@19 231
Chris@19 232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
Chris@19 233 if (n > 2) {
Chris@19 234 if (n % 2 == 0)
Chris@19 235 for (ia = 0; ia < na; ++ia) {
Chris@19 236 b[(ib * n + n - 1) * na + ia] = 0.0;
Chris@19 237 b[(ib * n + 0) * na + ia] +=
Chris@19 238 a[(ib * n + 1) * na + ia];
Chris@19 239 b[(ib * n + n/2) * na + ia] +=
Chris@19 240 + a[(ib * n + n/2 - 1) * na + ia]
Chris@19 241 - a[(ib * n + n/2 + 1) * na + ia];
Chris@19 242 b[(ib * n + n/2 + 1) * na + ia] +=
Chris@19 243 - a[(ib * n + n/2) * na + ia];
Chris@19 244 }
Chris@19 245 else
Chris@19 246 for (ia = 0; ia < na; ++ia) {
Chris@19 247 b[(ib * n + n - 1) * na + ia] = 0.0;
Chris@19 248 b[(ib * n + 0) * na + ia] +=
Chris@19 249 a[(ib * n + 1) * na + ia];
Chris@19 250 b[(ib * n + n/2) * na + ia] +=
Chris@19 251 + a[(ib * n + n/2) * na + ia]
Chris@19 252 - a[(ib * n + n/2 + 1) * na + ia];
Chris@19 253 b[(ib * n + n/2 + 1) * na + ia] +=
Chris@19 254 - a[(ib * n + n/2 + 1) * na + ia]
Chris@19 255 - a[(ib * n + n/2) * na + ia];
Chris@19 256 }
Chris@19 257 } else /* n <= 2 */ {
Chris@19 258 for (ia = 0; ia < na; ++ia) {
Chris@19 259 b[(ib * n + n - 1) * na + ia] =
Chris@19 260 a[(ib * n + 0) * na + ia];
Chris@19 261 b[(ib * n + 0) * na + ia] +=
Chris@19 262 a[(ib * n + n - 1) * na + ia];
Chris@19 263 }
Chris@19 264 }
Chris@19 265 break;
Chris@19 266
Chris@19 267 /* various even/odd boundary conditions */
Chris@19 268 case R2R_REDFT00:
Chris@19 269 isL1 = isR1 = 1;
Chris@19 270 goto mirrors;
Chris@19 271 case R2R_REDFT01:
Chris@19 272 isL1 = 1;
Chris@19 273 goto mirrors;
Chris@19 274 case R2R_REDFT10:
Chris@19 275 isL0 = isR0 = 1;
Chris@19 276 goto mirrors;
Chris@19 277 case R2R_REDFT11:
Chris@19 278 isL0 = 1;
Chris@19 279 isR0 = -1;
Chris@19 280 goto mirrors;
Chris@19 281 case R2R_RODFT00:
Chris@19 282 goto mirrors;
Chris@19 283 case R2R_RODFT01:
Chris@19 284 isR1 = 1;
Chris@19 285 goto mirrors;
Chris@19 286 case R2R_RODFT10:
Chris@19 287 isL0 = isR0 = -1;
Chris@19 288 goto mirrors;
Chris@19 289 case R2R_RODFT11:
Chris@19 290 isL0 = -1;
Chris@19 291 isR0 = 1;
Chris@19 292 goto mirrors;
Chris@19 293
Chris@19 294 mirrors:
Chris@19 295
Chris@19 296 for (ia = 0; ia < na; ++ia)
Chris@19 297 b[(ib * n + n - 1) * na + ia] =
Chris@19 298 isR0 * a[(ib * n + n - 1) * na + ia]
Chris@19 299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
Chris@19 300 : 0);
Chris@19 301
Chris@19 302 for (ia = 0; ia < na; ++ia)
Chris@19 303 b[(ib * n) * na + ia] +=
Chris@19 304 isL0 * a[(ib * n) * na + ia]
Chris@19 305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
Chris@19 306
Chris@19 307 }
Chris@19 308
Chris@19 309 for (i = 1; i < n; ++i)
Chris@19 310 for (ia = 0; ia < na; ++ia)
Chris@19 311 b[(ib * n + i) * na + ia] +=
Chris@19 312 a[(ib * n + i - 1) * na + ia];
Chris@19 313 }
Chris@19 314 }
Chris@19 315
Chris@19 316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
Chris@19 317 int n0, int k0, trigfun t)
Chris@19 318 {
Chris@19 319 int j, jb, ja;
Chris@19 320
Chris@19 321 for (jb = 0; jb < nb; ++jb)
Chris@19 322 for (j = 0; j < n; ++j) {
Chris@19 323 trigreal c = 2.0 * t(1, j + k0, n0);
Chris@19 324
Chris@19 325 for (ja = 0; ja < na; ++ja) {
Chris@19 326 int k = (jb * n + j) * na + ja;
Chris@19 327 b[k] = a[k] * c;
Chris@19 328 }
Chris@19 329 }
Chris@19 330 }
Chris@19 331
Chris@19 332 /* A = alpha * A (real, in place) */
Chris@19 333 static void rascale(R *a, R alpha, int n)
Chris@19 334 {
Chris@19 335 int i;
Chris@19 336
Chris@19 337 for (i = 0; i < n; ++i) {
Chris@19 338 a[i] *= alpha;
Chris@19 339 }
Chris@19 340 }
Chris@19 341
Chris@19 342 /*
Chris@19 343 * compute rdft:
Chris@19 344 */
Chris@19 345
Chris@19 346 /* copy real A into real B, using output stride of A and input stride of B */
Chris@19 347 typedef struct {
Chris@19 348 dotens2_closure k;
Chris@19 349 R *ra;
Chris@19 350 R *rb;
Chris@19 351 } cpyr_closure;
Chris@19 352
Chris@19 353 static void cpyr0(dotens2_closure *k_,
Chris@19 354 int indxa, int ondxa, int indxb, int ondxb)
Chris@19 355 {
Chris@19 356 cpyr_closure *k = (cpyr_closure *)k_;
Chris@19 357 k->rb[indxb] = k->ra[ondxa];
Chris@19 358 UNUSED(indxa); UNUSED(ondxb);
Chris@19 359 }
Chris@19 360
Chris@19 361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
Chris@19 362 {
Chris@19 363 cpyr_closure k;
Chris@19 364 k.k.apply = cpyr0;
Chris@19 365 k.ra = ra; k.rb = rb;
Chris@19 366 bench_dotens2(sza, szb, &k.k);
Chris@19 367 }
Chris@19 368
Chris@19 369 static void dofft(info *nfo, R *in, R *out)
Chris@19 370 {
Chris@19 371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
Chris@19 372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
Chris@19 373 doit(1, nfo->p);
Chris@19 374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
Chris@19 375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
Chris@19 376 }
Chris@19 377
Chris@19 378 static double racmp(R *a, R *b, int n, const char *test, double tol)
Chris@19 379 {
Chris@19 380 double d = raerror(a, b, n);
Chris@19 381 if (d > tol) {
Chris@19 382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
Chris@19 383 {
Chris@19 384 int i, N;
Chris@19 385 N = n > 300 && verbose <= 2 ? 300 : n;
Chris@19 386 for (i = 0; i < N; ++i)
Chris@19 387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
Chris@19 388 (double) a[i],
Chris@19 389 (double) b[i]);
Chris@19 390 }
Chris@19 391 bench_exit(EXIT_FAILURE);
Chris@19 392 }
Chris@19 393 return d;
Chris@19 394 }
Chris@19 395
Chris@19 396 /***********************************************************************/
Chris@19 397
Chris@19 398 typedef struct {
Chris@19 399 int n; /* physical size */
Chris@19 400 int n0; /* "logical" transform size */
Chris@19 401 int i0, k0; /* shifts of input/output */
Chris@19 402 trigfun ti, ts; /* impulse/shift trig functions */
Chris@19 403 } dim_stuff;
Chris@19 404
Chris@19 405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
Chris@19 406 R *A, int N)
Chris@19 407 {
Chris@19 408 if (rnk == 0)
Chris@19 409 A[0] = impulse_amp;
Chris@19 410 else {
Chris@19 411 int i;
Chris@19 412 N /= d->n;
Chris@19 413 for (i = 0; i < d->n; ++i) {
Chris@19 414 impulse_response(rnk - 1, d + 1,
Chris@19 415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
Chris@19 416 A + i * N, N);
Chris@19 417 }
Chris@19 418 }
Chris@19 419 }
Chris@19 420
Chris@19 421 /***************************************************************************/
Chris@19 422
Chris@19 423 /*
Chris@19 424 * Implementation of the FFT tester described in
Chris@19 425 *
Chris@19 426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
Chris@19 427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
Chris@19 428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
Chris@19 429 * Nevada, 29 May--1 June 1995.
Chris@19 430 *
Chris@19 431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
Chris@19 432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
Chris@19 433 */
Chris@19 434
Chris@19 435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
Chris@19 436 R *outB, R *outC, R *tmp, int rounds, double tol)
Chris@19 437 {
Chris@19 438 double e = 0.0;
Chris@19 439 int j;
Chris@19 440
Chris@19 441 for (j = 0; j < rounds; ++j) {
Chris@19 442 R alpha, beta;
Chris@19 443 alpha = mydrand();
Chris@19 444 beta = mydrand();
Chris@19 445 rarand(inA, n);
Chris@19 446 rarand(inB, n);
Chris@19 447 dofft(nfo, inA, outA);
Chris@19 448 dofft(nfo, inB, outB);
Chris@19 449
Chris@19 450 rascale(outA, alpha, n);
Chris@19 451 rascale(outB, beta, n);
Chris@19 452 raadd(tmp, outA, outB, n);
Chris@19 453 rascale(inA, alpha, n);
Chris@19 454 rascale(inB, beta, n);
Chris@19 455 raadd(inC, inA, inB, n);
Chris@19 456 dofft(nfo, inC, outC);
Chris@19 457
Chris@19 458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
Chris@19 459 }
Chris@19 460 return e;
Chris@19 461 }
Chris@19 462
Chris@19 463 static double rimpulse(dim_stuff *d, R impulse_amp,
Chris@19 464 int n, int vecn, info *nfo,
Chris@19 465 R *inA, R *inB, R *inC,
Chris@19 466 R *outA, R *outB, R *outC,
Chris@19 467 R *tmp, int rounds, double tol)
Chris@19 468 {
Chris@19 469 double e = 0.0;
Chris@19 470 int N = n * vecn;
Chris@19 471 int i;
Chris@19 472 int j;
Chris@19 473
Chris@19 474 /* test 2: check that the unit impulse is transformed properly */
Chris@19 475
Chris@19 476 for (i = 0; i < N; ++i) {
Chris@19 477 /* pls */
Chris@19 478 inA[i] = 0.0;
Chris@19 479 }
Chris@19 480 for (i = 0; i < vecn; ++i) {
Chris@19 481 inA[i * n] = (i+1) / (double)(vecn+1);
Chris@19 482
Chris@19 483 /* transform of the pls */
Chris@19 484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
Chris@19 485 outA + i * n, n);
Chris@19 486 }
Chris@19 487
Chris@19 488 dofft(nfo, inA, tmp);
Chris@19 489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
Chris@19 490
Chris@19 491 for (j = 0; j < rounds; ++j) {
Chris@19 492 rarand(inB, N);
Chris@19 493 rasub(inC, inA, inB, N);
Chris@19 494 dofft(nfo, inB, outB);
Chris@19 495 dofft(nfo, inC, outC);
Chris@19 496 raadd(tmp, outB, outC, N);
Chris@19 497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
Chris@19 498 }
Chris@19 499 return e;
Chris@19 500 }
Chris@19 501
Chris@19 502 static double t_shift(int n, int vecn, info *nfo,
Chris@19 503 R *inA, R *inB, R *outA, R *outB, R *tmp,
Chris@19 504 int rounds, double tol,
Chris@19 505 dim_stuff *d)
Chris@19 506 {
Chris@19 507 double e = 0.0;
Chris@19 508 int nb, na, dim, N = n * vecn;
Chris@19 509 int i, j;
Chris@19 510 bench_tensor *sz = nfo->probsz;
Chris@19 511
Chris@19 512 /* test 3: check the time-shift property */
Chris@19 513 /* the paper performs more tests, but this code should be fine too */
Chris@19 514
Chris@19 515 nb = 1;
Chris@19 516 na = n;
Chris@19 517
Chris@19 518 /* check shifts across all SZ dimensions */
Chris@19 519 for (dim = 0; dim < sz->rnk; ++dim) {
Chris@19 520 int ncur = sz->dims[dim].n;
Chris@19 521
Chris@19 522 na /= ncur;
Chris@19 523
Chris@19 524 for (j = 0; j < rounds; ++j) {
Chris@19 525 rarand(inA, N);
Chris@19 526
Chris@19 527 for (i = 0; i < vecn; ++i) {
Chris@19 528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
Chris@19 529 nfo->p->k[dim]);
Chris@19 530 }
Chris@19 531 dofft(nfo, inA, outA);
Chris@19 532 dofft(nfo, inB, outB);
Chris@19 533 for (i = 0; i < vecn; ++i)
Chris@19 534 raphase_shift(tmp + i * n, outA + i * n, ncur,
Chris@19 535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
Chris@19 536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
Chris@19 537 }
Chris@19 538
Chris@19 539 nb *= ncur;
Chris@19 540 }
Chris@19 541 return e;
Chris@19 542 }
Chris@19 543
Chris@19 544 /***********************************************************************/
Chris@19 545
Chris@19 546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
Chris@19 547 {
Chris@19 548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
Chris@19 549 info nfo;
Chris@19 550 int n, vecn, N;
Chris@19 551 double impulse_amp = 1.0;
Chris@19 552 dim_stuff *d;
Chris@19 553 int i;
Chris@19 554
Chris@19 555 if (rounds == 0)
Chris@19 556 rounds = 20; /* default value */
Chris@19 557
Chris@19 558 n = tensor_sz(p->sz);
Chris@19 559 vecn = tensor_sz(p->vecsz);
Chris@19 560 N = n * vecn;
Chris@19 561
Chris@19 562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
Chris@19 563 for (i = 0; i < p->sz->rnk; ++i) {
Chris@19 564 int n0, i0, k0;
Chris@19 565 trigfun ti, ts;
Chris@19 566
Chris@19 567 d[i].n = n0 = p->sz->dims[i].n;
Chris@19 568 if (p->k[i] > R2R_DHT)
Chris@19 569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
Chris@19 570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
Chris@19 571
Chris@19 572 switch (p->k[i]) {
Chris@19 573 case R2R_R2HC:
Chris@19 574 i0 = k0 = 0;
Chris@19 575 ti = realhalf;
Chris@19 576 ts = coshalf;
Chris@19 577 break;
Chris@19 578 case R2R_DHT:
Chris@19 579 i0 = k0 = 0;
Chris@19 580 ti = unity;
Chris@19 581 ts = cos00;
Chris@19 582 break;
Chris@19 583 case R2R_HC2R:
Chris@19 584 i0 = k0 = 0;
Chris@19 585 ti = unity;
Chris@19 586 ts = cos00;
Chris@19 587 break;
Chris@19 588 case R2R_REDFT00:
Chris@19 589 i0 = k0 = 0;
Chris@19 590 ti = ts = cos00;
Chris@19 591 break;
Chris@19 592 case R2R_REDFT01:
Chris@19 593 i0 = k0 = 0;
Chris@19 594 ti = ts = cos01;
Chris@19 595 break;
Chris@19 596 case R2R_REDFT10:
Chris@19 597 i0 = k0 = 0;
Chris@19 598 ti = cos10; impulse_amp *= 2.0;
Chris@19 599 ts = cos00;
Chris@19 600 break;
Chris@19 601 case R2R_REDFT11:
Chris@19 602 i0 = k0 = 0;
Chris@19 603 ti = cos11; impulse_amp *= 2.0;
Chris@19 604 ts = cos01;
Chris@19 605 break;
Chris@19 606 case R2R_RODFT00:
Chris@19 607 i0 = k0 = 1;
Chris@19 608 ti = sin00; impulse_amp *= 2.0;
Chris@19 609 ts = cos00;
Chris@19 610 break;
Chris@19 611 case R2R_RODFT01:
Chris@19 612 i0 = 1; k0 = 0;
Chris@19 613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
Chris@19 614 ts = cos01;
Chris@19 615 break;
Chris@19 616 case R2R_RODFT10:
Chris@19 617 i0 = 0; k0 = 1;
Chris@19 618 ti = sin10; impulse_amp *= 2.0;
Chris@19 619 ts = cos00;
Chris@19 620 break;
Chris@19 621 case R2R_RODFT11:
Chris@19 622 i0 = k0 = 0;
Chris@19 623 ti = sin11; impulse_amp *= 2.0;
Chris@19 624 ts = cos01;
Chris@19 625 break;
Chris@19 626 default:
Chris@19 627 BENCH_ASSERT(0);
Chris@19 628 return;
Chris@19 629 }
Chris@19 630
Chris@19 631 d[i].n0 = n0;
Chris@19 632 d[i].i0 = i0;
Chris@19 633 d[i].k0 = k0;
Chris@19 634 d[i].ti = ti;
Chris@19 635 d[i].ts = ts;
Chris@19 636 }
Chris@19 637
Chris@19 638
Chris@19 639 inA = (R *) bench_malloc(N * sizeof(R));
Chris@19 640 inB = (R *) bench_malloc(N * sizeof(R));
Chris@19 641 inC = (R *) bench_malloc(N * sizeof(R));
Chris@19 642 outA = (R *) bench_malloc(N * sizeof(R));
Chris@19 643 outB = (R *) bench_malloc(N * sizeof(R));
Chris@19 644 outC = (R *) bench_malloc(N * sizeof(R));
Chris@19 645 tmp = (R *) bench_malloc(N * sizeof(R));
Chris@19 646
Chris@19 647 nfo.p = p;
Chris@19 648 nfo.probsz = p->sz;
Chris@19 649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
Chris@19 650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
Chris@19 651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
Chris@19 652
Chris@19 653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
Chris@19 654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
Chris@19 655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
Chris@19 656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
Chris@19 657 rounds, tol, d);
Chris@19 658
Chris@19 659 /* grr, verify-lib.c:preserves_input() only works for complex */
Chris@19 660 if (!p->in_place && !p->destroy_input) {
Chris@19 661 bench_tensor *totalsz_swap, *pckdsz_swap;
Chris@19 662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
Chris@19 663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
Chris@19 664
Chris@19 665 for (i = 0; i < rounds; ++i) {
Chris@19 666 rarand(inA, N);
Chris@19 667 dofft(&nfo, inA, outB);
Chris@19 668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
Chris@19 669 racmp(inB, inA, N, "preserves_input", 0.0);
Chris@19 670 }
Chris@19 671
Chris@19 672 tensor_destroy(totalsz_swap);
Chris@19 673 tensor_destroy(pckdsz_swap);
Chris@19 674 }
Chris@19 675
Chris@19 676 tensor_destroy(nfo.totalsz);
Chris@19 677 tensor_destroy(nfo.pckdsz);
Chris@19 678 tensor_destroy(nfo.pckdvecsz);
Chris@19 679 bench_free(tmp);
Chris@19 680 bench_free(outC);
Chris@19 681 bench_free(outB);
Chris@19 682 bench_free(outA);
Chris@19 683 bench_free(inC);
Chris@19 684 bench_free(inB);
Chris@19 685 bench_free(inA);
Chris@19 686 bench_free(d);
Chris@19 687 }
Chris@19 688
Chris@19 689
Chris@19 690 typedef struct {
Chris@19 691 dofft_closure k;
Chris@19 692 bench_problem *p;
Chris@19 693 int n0;
Chris@19 694 } dofft_r2r_closure;
Chris@19 695
Chris@19 696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
Chris@19 697 {
Chris@19 698 int i;
Chris@19 699 for (i = 0; i < n; ++i)
Chris@19 700 out[i * os] = in[i * is] * scale;
Chris@19 701 }
Chris@19 702
Chris@19 703 static void mke00(C *a, int n, int c)
Chris@19 704 {
Chris@19 705 int i;
Chris@19 706 for (i = 1; i + i < n; ++i)
Chris@19 707 a[n - i][c] = a[i][c];
Chris@19 708 }
Chris@19 709
Chris@19 710 static void mkre00(C *a, int n)
Chris@19 711 {
Chris@19 712 mkreal(a, n);
Chris@19 713 mke00(a, n, 0);
Chris@19 714 }
Chris@19 715
Chris@19 716 static void mkimag(C *a, int n)
Chris@19 717 {
Chris@19 718 int i;
Chris@19 719 for (i = 0; i < n; ++i)
Chris@19 720 c_re(a[i]) = 0.0;
Chris@19 721 }
Chris@19 722
Chris@19 723 static void mko00(C *a, int n, int c)
Chris@19 724 {
Chris@19 725 int i;
Chris@19 726 a[0][c] = 0.0;
Chris@19 727 for (i = 1; i + i < n; ++i)
Chris@19 728 a[n - i][c] = -a[i][c];
Chris@19 729 if (i + i == n)
Chris@19 730 a[i][c] = 0.0;
Chris@19 731 }
Chris@19 732
Chris@19 733 static void mkro00(C *a, int n)
Chris@19 734 {
Chris@19 735 mkreal(a, n);
Chris@19 736 mko00(a, n, 0);
Chris@19 737 }
Chris@19 738
Chris@19 739 static void mkio00(C *a, int n)
Chris@19 740 {
Chris@19 741 mkimag(a, n);
Chris@19 742 mko00(a, n, 1);
Chris@19 743 }
Chris@19 744
Chris@19 745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
Chris@19 746 {
Chris@19 747 R a0;
Chris@19 748 a0 = c_re(a[0]);
Chris@19 749 mko00(a, n/2, 0);
Chris@19 750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
Chris@19 751 mkre00(a, n);
Chris@19 752 }
Chris@19 753
Chris@19 754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
Chris@19 755 {
Chris@19 756 c_re(a[0]) = c_im(a[0]) = 0.0;
Chris@19 757 mkre00(a, n/2);
Chris@19 758 mkro00(a, n);
Chris@19 759 }
Chris@19 760
Chris@19 761 static void mkoddonly(C *a, int n)
Chris@19 762 {
Chris@19 763 int i;
Chris@19 764 for (i = 0; i < n; i += 2)
Chris@19 765 c_re(a[i]) = c_im(a[i]) = 0.0;
Chris@19 766 }
Chris@19 767
Chris@19 768 static void mkre10(C *a, int n)
Chris@19 769 {
Chris@19 770 mkoddonly(a, n);
Chris@19 771 mkre00(a, n);
Chris@19 772 }
Chris@19 773
Chris@19 774 static void mkio10(C *a, int n)
Chris@19 775 {
Chris@19 776 mkoddonly(a, n);
Chris@19 777 mkio00(a, n);
Chris@19 778 }
Chris@19 779
Chris@19 780 static void mkre11(C *a, int n)
Chris@19 781 {
Chris@19 782 mkoddonly(a, n);
Chris@19 783 mko00(a, n/2, 0);
Chris@19 784 mkre00(a, n);
Chris@19 785 }
Chris@19 786
Chris@19 787 static void mkro11(C *a, int n)
Chris@19 788 {
Chris@19 789 mkoddonly(a, n);
Chris@19 790 mkre00(a, n/2);
Chris@19 791 mkro00(a, n);
Chris@19 792 }
Chris@19 793
Chris@19 794 static void mkio11(C *a, int n)
Chris@19 795 {
Chris@19 796 mkoddonly(a, n);
Chris@19 797 mke00(a, n/2, 1);
Chris@19 798 mkio00(a, n);
Chris@19 799 }
Chris@19 800
Chris@19 801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
Chris@19 802 {
Chris@19 803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
Chris@19 804 bench_problem *p = k->p;
Chris@19 805 bench_real *ri, *ro;
Chris@19 806 int n, is, os;
Chris@19 807
Chris@19 808 n = p->sz->dims[0].n;
Chris@19 809 is = p->sz->dims[0].is;
Chris@19 810 os = p->sz->dims[0].os;
Chris@19 811
Chris@19 812 ri = (bench_real *) p->in;
Chris@19 813 ro = (bench_real *) p->out;
Chris@19 814
Chris@19 815 switch (p->k[0]) {
Chris@19 816 case R2R_R2HC:
Chris@19 817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@19 818 break;
Chris@19 819 case R2R_HC2R:
Chris@19 820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
Chris@19 821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
Chris@19 822 break;
Chris@19 823 case R2R_REDFT00:
Chris@19 824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@19 825 break;
Chris@19 826 case R2R_RODFT00:
Chris@19 827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
Chris@19 828 break;
Chris@19 829 case R2R_REDFT01:
Chris@19 830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
Chris@19 831 break;
Chris@19 832 case R2R_REDFT10:
Chris@19 833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@19 834 break;
Chris@19 835 case R2R_RODFT01:
Chris@19 836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
Chris@19 837 break;
Chris@19 838 case R2R_RODFT10:
Chris@19 839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
Chris@19 840 break;
Chris@19 841 case R2R_REDFT11:
Chris@19 842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@19 843 break;
Chris@19 844 case R2R_RODFT11:
Chris@19 845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
Chris@19 846 break;
Chris@19 847 default:
Chris@19 848 BENCH_ASSERT(0); /* not yet implemented */
Chris@19 849 }
Chris@19 850
Chris@19 851 after_problem_rcopy_from(p, ri);
Chris@19 852 doit(1, p);
Chris@19 853 after_problem_rcopy_to(p, ro);
Chris@19 854
Chris@19 855 switch (p->k[0]) {
Chris@19 856 case R2R_R2HC:
Chris@19 857 if (k->k.recopy_input)
Chris@19 858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@19 859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
Chris@19 860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
Chris@19 861 c_im(out[0]) = 0.0;
Chris@19 862 if (n % 2 == 0)
Chris@19 863 c_im(out[n/2]) = 0.0;
Chris@19 864 mkhermitian1(out, n);
Chris@19 865 break;
Chris@19 866 case R2R_HC2R:
Chris@19 867 if (k->k.recopy_input) {
Chris@19 868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
Chris@19 869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
Chris@19 870 }
Chris@19 871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@19 872 mkreal(out, n);
Chris@19 873 break;
Chris@19 874 case R2R_REDFT00:
Chris@19 875 if (k->k.recopy_input)
Chris@19 876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@19 877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@19 878 mkre00(out, k->n0);
Chris@19 879 break;
Chris@19 880 case R2R_RODFT00:
Chris@19 881 if (k->k.recopy_input)
Chris@19 882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
Chris@19 883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
Chris@19 884 mkio00(out, k->n0);
Chris@19 885 break;
Chris@19 886 case R2R_REDFT01:
Chris@19 887 if (k->k.recopy_input)
Chris@19 888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
Chris@19 889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
Chris@19 890 mkre10(out, k->n0);
Chris@19 891 break;
Chris@19 892 case R2R_REDFT10:
Chris@19 893 if (k->k.recopy_input)
Chris@19 894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
Chris@19 895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
Chris@19 896 mkre01(out, k->n0);
Chris@19 897 break;
Chris@19 898 case R2R_RODFT01:
Chris@19 899 if (k->k.recopy_input)
Chris@19 900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
Chris@19 901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
Chris@19 902 mkio10(out, k->n0);
Chris@19 903 break;
Chris@19 904 case R2R_RODFT10:
Chris@19 905 if (k->k.recopy_input)
Chris@19 906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
Chris@19 907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
Chris@19 908 mkro01(out, k->n0);
Chris@19 909 break;
Chris@19 910 case R2R_REDFT11:
Chris@19 911 if (k->k.recopy_input)
Chris@19 912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
Chris@19 913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
Chris@19 914 mkre11(out, k->n0);
Chris@19 915 break;
Chris@19 916 case R2R_RODFT11:
Chris@19 917 if (k->k.recopy_input)
Chris@19 918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
Chris@19 919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
Chris@19 920 mkio11(out, k->n0);
Chris@19 921 break;
Chris@19 922 default:
Chris@19 923 BENCH_ASSERT(0); /* not yet implemented */
Chris@19 924 }
Chris@19 925 }
Chris@19 926
Chris@19 927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
Chris@19 928 double t[6])
Chris@19 929 {
Chris@19 930 dofft_r2r_closure k;
Chris@19 931 int n, n0 = 1;
Chris@19 932 C *a, *b;
Chris@19 933 aconstrain constrain = 0;
Chris@19 934
Chris@19 935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
Chris@19 936 BENCH_ASSERT(p->sz->rnk == 1);
Chris@19 937 BENCH_ASSERT(p->vecsz->rnk == 0);
Chris@19 938
Chris@19 939 k.k.apply = r2r_apply;
Chris@19 940 k.k.recopy_input = 0;
Chris@19 941 k.p = p;
Chris@19 942 n = tensor_sz(p->sz);
Chris@19 943
Chris@19 944 switch (p->k[0]) {
Chris@19 945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
Chris@19 946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
Chris@19 947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
Chris@19 948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
Chris@19 949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
Chris@19 950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
Chris@19 951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
Chris@19 952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
Chris@19 953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
Chris@19 954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
Chris@19 955 default: BENCH_ASSERT(0); /* not yet implemented */
Chris@19 956 }
Chris@19 957 k.n0 = n0;
Chris@19 958
Chris@19 959 a = (C *) bench_malloc(n0 * sizeof(C));
Chris@19 960 b = (C *) bench_malloc(n0 * sizeof(C));
Chris@19 961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
Chris@19 962 bench_free(b);
Chris@19 963 bench_free(a);
Chris@19 964 }