annotate fft/fftw/fftw-3.3.4/genfft/trig.ml @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 (*
Chris@19 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@19 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 5 *
Chris@19 6 * This program is free software; you can redistribute it and/or modify
Chris@19 7 * it under the terms of the GNU General Public License as published by
Chris@19 8 * the Free Software Foundation; either version 2 of the License, or
Chris@19 9 * (at your option) any later version.
Chris@19 10 *
Chris@19 11 * This program is distributed in the hope that it will be useful,
Chris@19 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 14 * GNU General Public License for more details.
Chris@19 15 *
Chris@19 16 * You should have received a copy of the GNU General Public License
Chris@19 17 * along with this program; if not, write to the Free Software
Chris@19 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 19 *
Chris@19 20 *)
Chris@19 21
Chris@19 22 (* trigonometric transforms *)
Chris@19 23 open Util
Chris@19 24
Chris@19 25 (* DFT of real input *)
Chris@19 26 let rdft sign n input =
Chris@19 27 Fft.dft sign n (Complex.real @@ input)
Chris@19 28
Chris@19 29 (* DFT of hermitian input *)
Chris@19 30 let hdft sign n input =
Chris@19 31 Fft.dft sign n (Complex.hermitian n input)
Chris@19 32
Chris@19 33 (* DFT real transform of vectors of two real numbers,
Chris@19 34 multiplication by (NaN I), and summation *)
Chris@19 35 let dft_via_rdft sign n input =
Chris@19 36 let f = rdft sign n input
Chris@19 37 in fun i ->
Chris@19 38 Complex.plus
Chris@19 39 [Complex.real (f i);
Chris@19 40 Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
Chris@19 41
Chris@19 42 (* Discrete Hartley Transform *)
Chris@19 43 let dht sign n input =
Chris@19 44 let f = Fft.dft sign n (Complex.real @@ input) in
Chris@19 45 (fun i ->
Chris@19 46 Complex.plus [Complex.real (f i); Complex.imag (f i)])
Chris@19 47
Chris@19 48 let trigI n input =
Chris@19 49 let twon = 2 * n in
Chris@19 50 let input' = Complex.hermitian twon input
Chris@19 51 in
Chris@19 52 Fft.dft 1 twon input'
Chris@19 53
Chris@19 54 let interleave_zero input = fun i ->
Chris@19 55 if (i mod 2) == 0
Chris@19 56 then Complex.zero
Chris@19 57 else
Chris@19 58 input ((i - 1) / 2)
Chris@19 59
Chris@19 60 let trigII n input =
Chris@19 61 let fourn = 4 * n in
Chris@19 62 let input' = Complex.hermitian fourn (interleave_zero input)
Chris@19 63 in
Chris@19 64 Fft.dft 1 fourn input'
Chris@19 65
Chris@19 66 let trigIII n input =
Chris@19 67 let fourn = 4 * n in
Chris@19 68 let twon = 2 * n in
Chris@19 69 let input' = Complex.hermitian fourn
Chris@19 70 (fun i ->
Chris@19 71 if (i == 0) then
Chris@19 72 Complex.real (input 0)
Chris@19 73 else if (i == twon) then
Chris@19 74 Complex.uminus (Complex.real (input 0))
Chris@19 75 else
Chris@19 76 Complex.antihermitian twon input i)
Chris@19 77 in
Chris@19 78 let dft = Fft.dft 1 fourn input'
Chris@19 79 in fun k -> dft (2 * k + 1)
Chris@19 80
Chris@19 81 let zero_extend n input = fun i ->
Chris@19 82 if (i >= 0 && i < n)
Chris@19 83 then input i
Chris@19 84 else Complex.zero
Chris@19 85
Chris@19 86 let trigIV n input =
Chris@19 87 let fourn = 4 * n
Chris@19 88 and eightn = 8 * n in
Chris@19 89 let input' = Complex.hermitian eightn
Chris@19 90 (zero_extend fourn (Complex.antihermitian fourn
Chris@19 91 (interleave_zero input)))
Chris@19 92 in
Chris@19 93 let dft = Fft.dft 1 eightn input'
Chris@19 94 in fun k -> dft (2 * k + 1)
Chris@19 95
Chris@19 96 let make_dct scale nshift trig =
Chris@19 97 fun n input ->
Chris@19 98 trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
Chris@19 99 (zero_extend n input))
Chris@19 100 (*
Chris@19 101 * DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
Chris@19 102 *)
Chris@19 103 let dctI = make_dct Complex.one 1 trigI
Chris@19 104
Chris@19 105 (*
Chris@19 106 * DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
Chris@19 107 *)
Chris@19 108 let dctII = make_dct Complex.one 0 trigII
Chris@19 109
Chris@19 110 (*
Chris@19 111 * DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
Chris@19 112 *)
Chris@19 113 let dctIII = make_dct Complex.half 0 trigIII
Chris@19 114
Chris@19 115 (*
Chris@19 116 * DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
Chris@19 117 *)
Chris@19 118 let dctIV = make_dct Complex.half 0 trigIV
Chris@19 119
Chris@19 120 let shift s input = fun i -> input (i - s)
Chris@19 121
Chris@19 122 (* DST-x input := TRIG-x (input / i) *)
Chris@19 123 let make_dst scale nshift kshift jshift trig =
Chris@19 124 fun n input ->
Chris@19 125 Complex.real @@
Chris@19 126 (shift (- jshift)
Chris@19 127 (trig (n + nshift) (Complex.uminus @@
Chris@19 128 (Complex.times Complex.i) @@
Chris@19 129 (Complex.times scale) @@
Chris@19 130 Complex.real @@
Chris@19 131 (shift kshift (zero_extend n input)))))
Chris@19 132
Chris@19 133 (*
Chris@19 134 * DST-I: y[k] = sum x[j] sin(pi * j * k / n)
Chris@19 135 *)
Chris@19 136 let dstI = make_dst Complex.one 1 1 1 trigI
Chris@19 137
Chris@19 138 (*
Chris@19 139 * DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
Chris@19 140 *)
Chris@19 141 let dstII = make_dst Complex.one 0 0 1 trigII
Chris@19 142
Chris@19 143 (*
Chris@19 144 * DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
Chris@19 145 *)
Chris@19 146 let dstIII = make_dst Complex.half 0 1 0 trigIII
Chris@19 147
Chris@19 148 (*
Chris@19 149 * DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
Chris@19 150 *)
Chris@19 151 let dstIV = make_dst Complex.half 0 0 0 trigIV
Chris@19 152