annotate fft/fftw/fftw-3.3.4/genfft/conv.ml @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 (*
Chris@19 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@19 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 5 *
Chris@19 6 * This program is free software; you can redistribute it and/or modify
Chris@19 7 * it under the terms of the GNU General Public License as published by
Chris@19 8 * the Free Software Foundation; either version 2 of the License, or
Chris@19 9 * (at your option) any later version.
Chris@19 10 *
Chris@19 11 * This program is distributed in the hope that it will be useful,
Chris@19 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 14 * GNU General Public License for more details.
Chris@19 15 *
Chris@19 16 * You should have received a copy of the GNU General Public License
Chris@19 17 * along with this program; if not, write to the Free Software
Chris@19 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 19 *
Chris@19 20 *)
Chris@19 21
Chris@19 22 open Complex
Chris@19 23 open Util
Chris@19 24
Chris@19 25 let polyphase m a ph i = a (m * i + ph)
Chris@19 26
Chris@19 27 let rec divmod n i =
Chris@19 28 if (i < 0) then
Chris@19 29 let (a, b) = divmod n (i + n)
Chris@19 30 in (a - 1, b)
Chris@19 31 else (i / n, i mod n)
Chris@19 32
Chris@19 33 let unpolyphase m a i = let (x, y) = divmod m i in a y x
Chris@19 34
Chris@19 35 let lift2 f a b i = f (a i) (b i)
Chris@19 36
Chris@19 37 (* convolution of signals A and B *)
Chris@19 38 let rec conv na a nb b =
Chris@19 39 let rec naive na a nb b i =
Chris@19 40 sigma 0 na (fun j -> (a j) @* (b (i - j)))
Chris@19 41
Chris@19 42 and recur na a nb b =
Chris@19 43 if (na <= 1 || nb <= 1) then
Chris@19 44 naive na a nb b
Chris@19 45 else
Chris@19 46 let p = polyphase 2 in
Chris@19 47 let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
Chris@19 48 and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
Chris@19 49 and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
Chris@19 50 and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
Chris@19 51 unpolyphase 2 (function
Chris@19 52 0 -> fun i -> (ee i) @+ (oo (i - 1))
Chris@19 53 | 1 -> fun i -> (eo i) @+ (oe i)
Chris@19 54 | _ -> failwith "recur")
Chris@19 55
Chris@19 56
Chris@19 57 (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
Chris@19 58 and karatsuba1 na a nb b =
Chris@19 59 let p = polyphase 2 in
Chris@19 60 let ae = p a 0 and nae = na - na / 2
Chris@19 61 and ao = p a 1 and nao = na / 2
Chris@19 62 and be = p b 0 and nbe = nb - nb / 2
Chris@19 63 and bo = p b 1 and nbo = nb / 2 in
Chris@19 64 let ae = infinite nae ae and ao = infinite nao ao
Chris@19 65 and be = infinite nbe be and bo = infinite nbo bo in
Chris@19 66 let aeo = lift2 (@+) ae ao and naeo = nae
Chris@19 67 and beo = lift2 (@+) be bo and nbeo = nbe in
Chris@19 68 let ee = conv nae ae nbe be
Chris@19 69 and oo = conv nao ao nbo bo
Chris@19 70 and eoeo = conv naeo aeo nbeo beo in
Chris@19 71
Chris@19 72 let q = function
Chris@19 73 0 -> fun i -> (ee i) @+ (oo (i - 1))
Chris@19 74 | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
Chris@19 75 | _ -> failwith "karatsuba1" in
Chris@19 76 unpolyphase 2 q
Chris@19 77
Chris@19 78 (* Karatsuba variant 2:
Chris@19 79 (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
Chris@19 80 and karatsuba2 na a nb b =
Chris@19 81 let p = polyphase 2 in
Chris@19 82 let ae = p a 0 and nae = na - na / 2
Chris@19 83 and ao = p a 1 and nao = na / 2
Chris@19 84 and be = p b 0 and nbe = nb - nb / 2
Chris@19 85 and bo = p b 1 and nbo = nb / 2 in
Chris@19 86 let ae = infinite nae ae and ao = infinite nao ao
Chris@19 87 and be = infinite nbe be and bo = infinite nbo bo in
Chris@19 88
Chris@19 89 let c1 = conv nae (lift2 (@+) ae ao) nbe be
Chris@19 90 and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
Chris@19 91 and c3 = conv nae ae nbe (lift2 (@-) be bo) in
Chris@19 92
Chris@19 93 let q = function
Chris@19 94 0 -> lift2 (@-) c1 c2
Chris@19 95 | 1 -> lift2 (@-) c1 c3
Chris@19 96 | _ -> failwith "karatsuba2" in
Chris@19 97 unpolyphase 2 q
Chris@19 98
Chris@19 99 and karatsuba na a nb b =
Chris@19 100 let m = na + nb - 1 in
Chris@19 101 if (m < !Magic.karatsuba_min) then
Chris@19 102 recur na a nb b
Chris@19 103 else
Chris@19 104 match !Magic.karatsuba_variant with
Chris@19 105 1 -> karatsuba1 na a nb b
Chris@19 106 | 2 -> karatsuba2 na a nb b
Chris@19 107 | _ -> failwith "unknown karatsuba variant"
Chris@19 108
Chris@19 109 and via_circular na a nb b =
Chris@19 110 let m = na + nb - 1 in
Chris@19 111 if (m < !Magic.circular_min) then
Chris@19 112 karatsuba na a nb b
Chris@19 113 else
Chris@19 114 let rec find_min n = if n >= m then n else find_min (2 * n) in
Chris@19 115 circular (find_min 1) a b
Chris@19 116
Chris@19 117 in
Chris@19 118 let a = infinite na a and b = infinite nb b in
Chris@19 119 let res = array (na + nb - 1) (via_circular na a nb b) in
Chris@19 120 infinite (na + nb - 1) res
Chris@19 121
Chris@19 122 and circular n a b =
Chris@19 123 let via_dft n a b =
Chris@19 124 let fa = Fft.dft (-1) n a
Chris@19 125 and fb = Fft.dft (-1) n b
Chris@19 126 and scale = inverse_int n in
Chris@19 127 let fab i = ((fa i) @* (fb i)) @* scale in
Chris@19 128 Fft.dft 1 n fab
Chris@19 129
Chris@19 130 in via_dft n a b