annotate fft/fftw/fftw-3.3.4/genfft/complex.ml @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 (*
Chris@19 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@19 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 5 *
Chris@19 6 * This program is free software; you can redistribute it and/or modify
Chris@19 7 * it under the terms of the GNU General Public License as published by
Chris@19 8 * the Free Software Foundation; either version 2 of the License, or
Chris@19 9 * (at your option) any later version.
Chris@19 10 *
Chris@19 11 * This program is distributed in the hope that it will be useful,
Chris@19 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 14 * GNU General Public License for more details.
Chris@19 15 *
Chris@19 16 * You should have received a copy of the GNU General Public License
Chris@19 17 * along with this program; if not, write to the Free Software
Chris@19 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 19 *
Chris@19 20 *)
Chris@19 21
Chris@19 22 (* abstraction layer for complex operations *)
Chris@19 23 open Littlesimp
Chris@19 24 open Expr
Chris@19 25
Chris@19 26 (* type of complex expressions *)
Chris@19 27 type expr = CE of Expr.expr * Expr.expr
Chris@19 28
Chris@19 29 let two = CE (makeNum Number.two, makeNum Number.zero)
Chris@19 30 let one = CE (makeNum Number.one, makeNum Number.zero)
Chris@19 31 let i = CE (makeNum Number.zero, makeNum Number.one)
Chris@19 32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
Chris@19 33 let make (r, i) = CE (r, i)
Chris@19 34
Chris@19 35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
Chris@19 36
Chris@19 37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
Chris@19 38 makeNum Number.zero)
Chris@19 39
Chris@19 40 let inverse_int_sqrt n =
Chris@19 41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
Chris@19 42 makeNum Number.zero)
Chris@19 43 let int_sqrt n =
Chris@19 44 CE (makeNum (Number.sqrt (Number.of_int n)),
Chris@19 45 makeNum Number.zero)
Chris@19 46
Chris@19 47 let nan x = CE (NaN x, makeNum Number.zero)
Chris@19 48
Chris@19 49 let half = inverse_int 2
Chris@19 50
Chris@19 51 let times3x3 (CE (a, b)) (CE (c, d)) =
Chris@19 52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
Chris@19 53 makeTimes (b, makePlus [c; makeUminus (d)])],
Chris@19 54 makePlus [makeTimes (a, makePlus [c; d]);
Chris@19 55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
Chris@19 56
Chris@19 57 let times (CE (a, b)) (CE (c, d)) =
Chris@19 58 if not !Magic.threemult then
Chris@19 59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
Chris@19 60 makePlus [makeTimes (a, d); makeTimes (b, c)])
Chris@19 61 else if is_constant c && is_constant d then
Chris@19 62 times3x3 (CE (a, b)) (CE (c, d))
Chris@19 63 else (* hope a and b are constant expressions *)
Chris@19 64 times3x3 (CE (c, d)) (CE (a, b))
Chris@19 65
Chris@19 66 let ctimes (CE (a, _)) (CE (c, _)) =
Chris@19 67 CE (CTimes (a, c), makeNum Number.zero)
Chris@19 68
Chris@19 69 let ctimesj (CE (a, _)) (CE (c, _)) =
Chris@19 70 CE (CTimesJ (a, c), makeNum Number.zero)
Chris@19 71
Chris@19 72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
Chris@19 73 let exp n i =
Chris@19 74 let (c, s) = Number.cexp n i
Chris@19 75 in CE (makeNum c, makeNum s)
Chris@19 76
Chris@19 77 (* various trig functions evaluated at (2*pi*i/n * m) *)
Chris@19 78 let sec n m =
Chris@19 79 let (c, s) = Number.cexp n m
Chris@19 80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
Chris@19 81 let csc n m =
Chris@19 82 let (c, s) = Number.cexp n m
Chris@19 83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
Chris@19 84 let tan n m =
Chris@19 85 let (c, s) = Number.cexp n m
Chris@19 86 in CE (makeNum (Number.div s c), makeNum Number.zero)
Chris@19 87 let cot n m =
Chris@19 88 let (c, s) = Number.cexp n m
Chris@19 89 in CE (makeNum (Number.div c s), makeNum Number.zero)
Chris@19 90
Chris@19 91 (* complex sum *)
Chris@19 92 let plus a =
Chris@19 93 let rec unzip_complex = function
Chris@19 94 [] -> ([], [])
Chris@19 95 | ((CE (a, b)) :: s) ->
Chris@19 96 let (r,i) = unzip_complex s
Chris@19 97 in
Chris@19 98 (a::r), (b::i) in
Chris@19 99 let (c, d) = unzip_complex a in
Chris@19 100 CE (makePlus c, makePlus d)
Chris@19 101
Chris@19 102 (* extract real/imaginary *)
Chris@19 103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
Chris@19 104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
Chris@19 105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
Chris@19 106 let conj (CE (a, b)) = CE (a, makeUminus b)
Chris@19 107
Chris@19 108
Chris@19 109 (* abstraction of sum_{i=0}^{n-1} *)
Chris@19 110 let sigma a b f = plus (List.map f (Util.interval a b))
Chris@19 111
Chris@19 112 (* store and assignment operations *)
Chris@19 113 let store_real v (CE (a, b)) = Expr.Store (v, a)
Chris@19 114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
Chris@19 115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
Chris@19 116
Chris@19 117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
Chris@19 118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
Chris@19 119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
Chris@19 120
Chris@19 121
Chris@19 122 (************************
Chris@19 123 shortcuts
Chris@19 124 ************************)
Chris@19 125 let (@*) = times
Chris@19 126 let (@+) a b = plus [a; b]
Chris@19 127 let (@-) a b = plus [a; uminus b]
Chris@19 128
Chris@19 129 (* type of complex signals *)
Chris@19 130 type signal = int -> expr
Chris@19 131
Chris@19 132 (* make a finite signal infinite *)
Chris@19 133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
Chris@19 134
Chris@19 135 let hermitian n a =
Chris@19 136 Util.array n (fun i ->
Chris@19 137 if (i = 0) then real (a 0)
Chris@19 138 else if (i < n - i) then (a i)
Chris@19 139 else if (i > n - i) then conj (a (n - i))
Chris@19 140 else real (a i))
Chris@19 141
Chris@19 142 let antihermitian n a =
Chris@19 143 Util.array n (fun i ->
Chris@19 144 if (i = 0) then iimag (a 0)
Chris@19 145 else if (i < n - i) then (a i)
Chris@19 146 else if (i > n - i) then uminus (conj (a (n - i)))
Chris@19 147 else iimag (a i))