annotate fft/fftw/fftw-3.3.4/dft/simd/common/t3fv_5.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:26 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3fv_5 -include t3f.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 22 FP additions, 23 FP multiplications,
Chris@19 32 * (or, 13 additions, 14 multiplications, 9 fused multiply/add),
Chris@19 33 * 30 stack variables, 4 constants, and 10 memory accesses
Chris@19 34 */
Chris@19 35 #include "t3f.h"
Chris@19 36
Chris@19 37 static void t3fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 43 {
Chris@19 44 INT m;
Chris@19 45 R *x;
Chris@19 46 x = ri;
Chris@19 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@19 48 V T2, T5, T1, T3, Td, T7, Tb;
Chris@19 49 T2 = LDW(&(W[0]));
Chris@19 50 T5 = LDW(&(W[TWVL * 2]));
Chris@19 51 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 52 T3 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 53 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 54 T7 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 55 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 56 {
Chris@19 57 V Ta, T6, T4, Te, Tc, T8;
Chris@19 58 Ta = VZMULJ(T2, T5);
Chris@19 59 T6 = VZMUL(T2, T5);
Chris@19 60 T4 = VZMULJ(T2, T3);
Chris@19 61 Te = VZMULJ(T5, Td);
Chris@19 62 Tc = VZMULJ(Ta, Tb);
Chris@19 63 T8 = VZMULJ(T6, T7);
Chris@19 64 {
Chris@19 65 V Tf, Tl, T9, Tk;
Chris@19 66 Tf = VADD(Tc, Te);
Chris@19 67 Tl = VSUB(Tc, Te);
Chris@19 68 T9 = VADD(T4, T8);
Chris@19 69 Tk = VSUB(T4, T8);
Chris@19 70 {
Chris@19 71 V Ti, Tg, To, Tm, Th, Tn, Tj;
Chris@19 72 Ti = VSUB(T9, Tf);
Chris@19 73 Tg = VADD(T9, Tf);
Chris@19 74 To = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tk, Tl));
Chris@19 75 Tm = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tl, Tk));
Chris@19 76 Th = VFNMS(LDK(KP250000000), Tg, T1);
Chris@19 77 ST(&(x[0]), VADD(T1, Tg), ms, &(x[0]));
Chris@19 78 Tn = VFNMS(LDK(KP559016994), Ti, Th);
Chris@19 79 Tj = VFMA(LDK(KP559016994), Ti, Th);
Chris@19 80 ST(&(x[WS(rs, 2)]), VFMAI(To, Tn), ms, &(x[0]));
Chris@19 81 ST(&(x[WS(rs, 3)]), VFNMSI(To, Tn), ms, &(x[WS(rs, 1)]));
Chris@19 82 ST(&(x[WS(rs, 4)]), VFMAI(Tm, Tj), ms, &(x[0]));
Chris@19 83 ST(&(x[WS(rs, 1)]), VFNMSI(Tm, Tj), ms, &(x[WS(rs, 1)]));
Chris@19 84 }
Chris@19 85 }
Chris@19 86 }
Chris@19 87 }
Chris@19 88 }
Chris@19 89 VLEAVE();
Chris@19 90 }
Chris@19 91
Chris@19 92 static const tw_instr twinstr[] = {
Chris@19 93 VTW(0, 1),
Chris@19 94 VTW(0, 3),
Chris@19 95 {TW_NEXT, VL, 0}
Chris@19 96 };
Chris@19 97
Chris@19 98 static const ct_desc desc = { 5, XSIMD_STRING("t3fv_5"), twinstr, &GENUS, {13, 14, 9, 0}, 0, 0, 0 };
Chris@19 99
Chris@19 100 void XSIMD(codelet_t3fv_5) (planner *p) {
Chris@19 101 X(kdft_dit_register) (p, t3fv_5, &desc);
Chris@19 102 }
Chris@19 103 #else /* HAVE_FMA */
Chris@19 104
Chris@19 105 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3fv_5 -include t3f.h */
Chris@19 106
Chris@19 107 /*
Chris@19 108 * This function contains 22 FP additions, 18 FP multiplications,
Chris@19 109 * (or, 19 additions, 15 multiplications, 3 fused multiply/add),
Chris@19 110 * 24 stack variables, 4 constants, and 10 memory accesses
Chris@19 111 */
Chris@19 112 #include "t3f.h"
Chris@19 113
Chris@19 114 static void t3fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 115 {
Chris@19 116 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 117 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 118 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 119 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 120 {
Chris@19 121 INT m;
Chris@19 122 R *x;
Chris@19 123 x = ri;
Chris@19 124 for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@19 125 V T1, T4, T5, T9;
Chris@19 126 T1 = LDW(&(W[0]));
Chris@19 127 T4 = LDW(&(W[TWVL * 2]));
Chris@19 128 T5 = VZMUL(T1, T4);
Chris@19 129 T9 = VZMULJ(T1, T4);
Chris@19 130 {
Chris@19 131 V Tg, Tk, Tl, T8, Te, Th;
Chris@19 132 Tg = LD(&(x[0]), ms, &(x[0]));
Chris@19 133 {
Chris@19 134 V T3, Td, T7, Tb;
Chris@19 135 {
Chris@19 136 V T2, Tc, T6, Ta;
Chris@19 137 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 138 T3 = VZMULJ(T1, T2);
Chris@19 139 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 140 Td = VZMULJ(T4, Tc);
Chris@19 141 T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 142 T7 = VZMULJ(T5, T6);
Chris@19 143 Ta = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 144 Tb = VZMULJ(T9, Ta);
Chris@19 145 }
Chris@19 146 Tk = VSUB(T3, T7);
Chris@19 147 Tl = VSUB(Tb, Td);
Chris@19 148 T8 = VADD(T3, T7);
Chris@19 149 Te = VADD(Tb, Td);
Chris@19 150 Th = VADD(T8, Te);
Chris@19 151 }
Chris@19 152 ST(&(x[0]), VADD(Tg, Th), ms, &(x[0]));
Chris@19 153 {
Chris@19 154 V Tm, Tn, Tj, To, Tf, Ti;
Chris@19 155 Tm = VBYI(VFMA(LDK(KP951056516), Tk, VMUL(LDK(KP587785252), Tl)));
Chris@19 156 Tn = VBYI(VFNMS(LDK(KP587785252), Tk, VMUL(LDK(KP951056516), Tl)));
Chris@19 157 Tf = VMUL(LDK(KP559016994), VSUB(T8, Te));
Chris@19 158 Ti = VFNMS(LDK(KP250000000), Th, Tg);
Chris@19 159 Tj = VADD(Tf, Ti);
Chris@19 160 To = VSUB(Ti, Tf);
Chris@19 161 ST(&(x[WS(rs, 1)]), VSUB(Tj, Tm), ms, &(x[WS(rs, 1)]));
Chris@19 162 ST(&(x[WS(rs, 3)]), VSUB(To, Tn), ms, &(x[WS(rs, 1)]));
Chris@19 163 ST(&(x[WS(rs, 4)]), VADD(Tm, Tj), ms, &(x[0]));
Chris@19 164 ST(&(x[WS(rs, 2)]), VADD(Tn, To), ms, &(x[0]));
Chris@19 165 }
Chris@19 166 }
Chris@19 167 }
Chris@19 168 }
Chris@19 169 VLEAVE();
Chris@19 170 }
Chris@19 171
Chris@19 172 static const tw_instr twinstr[] = {
Chris@19 173 VTW(0, 1),
Chris@19 174 VTW(0, 3),
Chris@19 175 {TW_NEXT, VL, 0}
Chris@19 176 };
Chris@19 177
Chris@19 178 static const ct_desc desc = { 5, XSIMD_STRING("t3fv_5"), twinstr, &GENUS, {19, 15, 3, 0}, 0, 0, 0 };
Chris@19 179
Chris@19 180 void XSIMD(codelet_t3fv_5) (planner *p) {
Chris@19 181 X(kdft_dit_register) (p, t3fv_5, &desc);
Chris@19 182 }
Chris@19 183 #endif /* HAVE_FMA */