annotate fft/fftw/fftw-3.3.4/dft/simd/common/t3bv_8.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:47 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@19 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@19 33 * 43 stack variables, 1 constants, and 16 memory accesses
Chris@19 34 */
Chris@19 35 #include "t3b.h"
Chris@19 36
Chris@19 37 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 40 {
Chris@19 41 INT m;
Chris@19 42 R *x;
Chris@19 43 x = ii;
Chris@19 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@19 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
Chris@19 46 T2 = LDW(&(W[0]));
Chris@19 47 T3 = LDW(&(W[TWVL * 2]));
Chris@19 48 Tb = LDW(&(W[TWVL * 4]));
Chris@19 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 55 T4 = VZMUL(T2, T3);
Chris@19 56 Ta = VZMULJ(T2, T3);
Chris@19 57 Tp = VZMULJ(T2, Tb);
Chris@19 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 60 T9 = VZMUL(T2, T8);
Chris@19 61 {
Chris@19 62 V T6, To, Tc, Tr, Th, Tj;
Chris@19 63 T6 = VZMUL(T4, T5);
Chris@19 64 To = VZMUL(Ta, Tn);
Chris@19 65 Tc = VZMULJ(Ta, Tb);
Chris@19 66 Tr = VZMUL(Tp, Tq);
Chris@19 67 Th = VZMUL(Tb, Tg);
Chris@19 68 Tj = VZMUL(T3, Ti);
Chris@19 69 {
Chris@19 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
Chris@19 71 Tx = VADD(T1, T6);
Chris@19 72 T7 = VSUB(T1, T6);
Chris@19 73 Te = VZMUL(Tc, Td);
Chris@19 74 Ts = VSUB(To, Tr);
Chris@19 75 Ty = VADD(To, Tr);
Chris@19 76 Tk = VSUB(Th, Tj);
Chris@19 77 TB = VADD(Th, Tj);
Chris@19 78 {
Chris@19 79 V Tf, TA, Tz, TD;
Chris@19 80 Tf = VSUB(T9, Te);
Chris@19 81 TA = VADD(T9, Te);
Chris@19 82 Tz = VSUB(Tx, Ty);
Chris@19 83 TD = VADD(Tx, Ty);
Chris@19 84 {
Chris@19 85 V TC, TE, Tl, Tt;
Chris@19 86 TC = VSUB(TA, TB);
Chris@19 87 TE = VADD(TA, TB);
Chris@19 88 Tl = VADD(Tf, Tk);
Chris@19 89 Tt = VSUB(Tf, Tk);
Chris@19 90 {
Chris@19 91 V Tu, Tw, Tm, Tv;
Chris@19 92 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@19 93 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@19 94 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
Chris@19 95 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
Chris@19 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@19 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@19 98 Tm = VFNMS(LDK(KP707106781), Tl, T7);
Chris@19 99 Tv = VFMA(LDK(KP707106781), Tl, T7);
Chris@19 100 ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@19 101 ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@19 102 ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@19 103 ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@19 104 }
Chris@19 105 }
Chris@19 106 }
Chris@19 107 }
Chris@19 108 }
Chris@19 109 }
Chris@19 110 }
Chris@19 111 VLEAVE();
Chris@19 112 }
Chris@19 113
Chris@19 114 static const tw_instr twinstr[] = {
Chris@19 115 VTW(0, 1),
Chris@19 116 VTW(0, 3),
Chris@19 117 VTW(0, 7),
Chris@19 118 {TW_NEXT, VL, 0}
Chris@19 119 };
Chris@19 120
Chris@19 121 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@19 122
Chris@19 123 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@19 124 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@19 125 }
Chris@19 126 #else /* HAVE_FMA */
Chris@19 127
Chris@19 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@19 129
Chris@19 130 /*
Chris@19 131 * This function contains 37 FP additions, 24 FP multiplications,
Chris@19 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@19 133 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@19 134 */
Chris@19 135 #include "t3b.h"
Chris@19 136
Chris@19 137 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 138 {
Chris@19 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 140 {
Chris@19 141 INT m;
Chris@19 142 R *x;
Chris@19 143 x = ii;
Chris@19 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@19 145 V T1, T4, T5, Tp, T6, T7, Tj;
Chris@19 146 T1 = LDW(&(W[0]));
Chris@19 147 T4 = LDW(&(W[TWVL * 2]));
Chris@19 148 T5 = VZMULJ(T1, T4);
Chris@19 149 Tp = VZMUL(T1, T4);
Chris@19 150 T6 = LDW(&(W[TWVL * 4]));
Chris@19 151 T7 = VZMULJ(T5, T6);
Chris@19 152 Tj = VZMULJ(T1, T6);
Chris@19 153 {
Chris@19 154 V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
Chris@19 155 To = LD(&(x[0]), ms, &(x[0]));
Chris@19 156 Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 157 Tr = VZMUL(Tp, Tq);
Chris@19 158 Ts = VSUB(To, Tr);
Chris@19 159 Tx = VADD(To, Tr);
Chris@19 160 {
Chris@19 161 V Ti, Tl, Th, Tk;
Chris@19 162 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 163 Ti = VZMUL(T5, Th);
Chris@19 164 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 165 Tl = VZMUL(Tj, Tk);
Chris@19 166 Tm = VSUB(Ti, Tl);
Chris@19 167 Ty = VADD(Ti, Tl);
Chris@19 168 }
Chris@19 169 {
Chris@19 170 V T3, T9, T2, T8;
Chris@19 171 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 172 T3 = VZMUL(T1, T2);
Chris@19 173 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 174 T9 = VZMUL(T7, T8);
Chris@19 175 Ta = VSUB(T3, T9);
Chris@19 176 TA = VADD(T3, T9);
Chris@19 177 }
Chris@19 178 {
Chris@19 179 V Tc, Te, Tb, Td;
Chris@19 180 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 181 Tc = VZMUL(T6, Tb);
Chris@19 182 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 183 Te = VZMUL(T4, Td);
Chris@19 184 Tf = VSUB(Tc, Te);
Chris@19 185 TB = VADD(Tc, Te);
Chris@19 186 }
Chris@19 187 {
Chris@19 188 V Tz, TC, TD, TE;
Chris@19 189 Tz = VSUB(Tx, Ty);
Chris@19 190 TC = VBYI(VSUB(TA, TB));
Chris@19 191 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@19 192 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
Chris@19 193 TD = VADD(Tx, Ty);
Chris@19 194 TE = VADD(TA, TB);
Chris@19 195 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@19 196 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@19 197 {
Chris@19 198 V Tn, Tv, Tu, Tw, Tg, Tt;
Chris@19 199 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
Chris@19 200 Tn = VBYI(VSUB(Tg, Tm));
Chris@19 201 Tv = VBYI(VADD(Tm, Tg));
Chris@19 202 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
Chris@19 203 Tu = VSUB(Ts, Tt);
Chris@19 204 Tw = VADD(Ts, Tt);
Chris@19 205 ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
Chris@19 206 ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@19 207 ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
Chris@19 208 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@19 209 }
Chris@19 210 }
Chris@19 211 }
Chris@19 212 }
Chris@19 213 }
Chris@19 214 VLEAVE();
Chris@19 215 }
Chris@19 216
Chris@19 217 static const tw_instr twinstr[] = {
Chris@19 218 VTW(0, 1),
Chris@19 219 VTW(0, 3),
Chris@19 220 VTW(0, 7),
Chris@19 221 {TW_NEXT, VL, 0}
Chris@19 222 };
Chris@19 223
Chris@19 224 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@19 225
Chris@19 226 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@19 227 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@19 228 }
Chris@19 229 #endif /* HAVE_FMA */