annotate fft/fftw/fftw-3.3.4/dft/simd/common/t1fv_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:14 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include t1f.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 23 FP additions, 18 FP multiplications,
Chris@19 32 * (or, 17 additions, 12 multiplications, 6 fused multiply/add),
Chris@19 33 * 27 stack variables, 2 constants, and 12 memory accesses
Chris@19 34 */
Chris@19 35 #include "t1f.h"
Chris@19 36
Chris@19 37 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 R *x;
Chris@19 44 x = ri;
Chris@19 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@19 46 V T1, T2, Ta, Tc, T5, T7;
Chris@19 47 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 48 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 49 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 50 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 51 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 52 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 53 {
Chris@19 54 V T3, Tb, Td, T6, T8;
Chris@19 55 T3 = BYTWJ(&(W[TWVL * 4]), T2);
Chris@19 56 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
Chris@19 57 Td = BYTWJ(&(W[0]), Tc);
Chris@19 58 T6 = BYTWJ(&(W[TWVL * 2]), T5);
Chris@19 59 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@19 60 {
Chris@19 61 V Ti, T4, Tk, Te, Tj, T9;
Chris@19 62 Ti = VADD(T1, T3);
Chris@19 63 T4 = VSUB(T1, T3);
Chris@19 64 Tk = VADD(Tb, Td);
Chris@19 65 Te = VSUB(Tb, Td);
Chris@19 66 Tj = VADD(T6, T8);
Chris@19 67 T9 = VSUB(T6, T8);
Chris@19 68 {
Chris@19 69 V Tl, Tn, Tf, Th, Tm, Tg;
Chris@19 70 Tl = VADD(Tj, Tk);
Chris@19 71 Tn = VMUL(LDK(KP866025403), VSUB(Tk, Tj));
Chris@19 72 Tf = VADD(T9, Te);
Chris@19 73 Th = VMUL(LDK(KP866025403), VSUB(Te, T9));
Chris@19 74 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@19 75 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@19 76 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
Chris@19 77 Tg = VFNMS(LDK(KP500000000), Tf, T4);
Chris@19 78 ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
Chris@19 79 ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
Chris@19 80 ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 81 ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 82 }
Chris@19 83 }
Chris@19 84 }
Chris@19 85 }
Chris@19 86 }
Chris@19 87 VLEAVE();
Chris@19 88 }
Chris@19 89
Chris@19 90 static const tw_instr twinstr[] = {
Chris@19 91 VTW(0, 1),
Chris@19 92 VTW(0, 2),
Chris@19 93 VTW(0, 3),
Chris@19 94 VTW(0, 4),
Chris@19 95 VTW(0, 5),
Chris@19 96 {TW_NEXT, VL, 0}
Chris@19 97 };
Chris@19 98
Chris@19 99 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 };
Chris@19 100
Chris@19 101 void XSIMD(codelet_t1fv_6) (planner *p) {
Chris@19 102 X(kdft_dit_register) (p, t1fv_6, &desc);
Chris@19 103 }
Chris@19 104 #else /* HAVE_FMA */
Chris@19 105
Chris@19 106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include t1f.h */
Chris@19 107
Chris@19 108 /*
Chris@19 109 * This function contains 23 FP additions, 14 FP multiplications,
Chris@19 110 * (or, 21 additions, 12 multiplications, 2 fused multiply/add),
Chris@19 111 * 19 stack variables, 2 constants, and 12 memory accesses
Chris@19 112 */
Chris@19 113 #include "t1f.h"
Chris@19 114
Chris@19 115 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 116 {
Chris@19 117 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 119 {
Chris@19 120 INT m;
Chris@19 121 R *x;
Chris@19 122 x = ri;
Chris@19 123 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@19 124 V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2;
Chris@19 125 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 126 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 127 T3 = BYTWJ(&(W[TWVL * 4]), T2);
Chris@19 128 T4 = VSUB(T1, T3);
Chris@19 129 Ti = VADD(T1, T3);
Chris@19 130 {
Chris@19 131 V Tb, Td, Ta, Tc;
Chris@19 132 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 133 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
Chris@19 134 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 135 Td = BYTWJ(&(W[0]), Tc);
Chris@19 136 Te = VSUB(Tb, Td);
Chris@19 137 Tk = VADD(Tb, Td);
Chris@19 138 }
Chris@19 139 {
Chris@19 140 V T6, T8, T5, T7;
Chris@19 141 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 142 T6 = BYTWJ(&(W[TWVL * 2]), T5);
Chris@19 143 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 144 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@19 145 T9 = VSUB(T6, T8);
Chris@19 146 Tj = VADD(T6, T8);
Chris@19 147 }
Chris@19 148 {
Chris@19 149 V Th, Tf, Tg, Tn, Tl, Tm;
Chris@19 150 Th = VBYI(VMUL(LDK(KP866025403), VSUB(Te, T9)));
Chris@19 151 Tf = VADD(T9, Te);
Chris@19 152 Tg = VFNMS(LDK(KP500000000), Tf, T4);
Chris@19 153 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
Chris@19 154 ST(&(x[WS(rs, 1)]), VADD(Tg, Th), ms, &(x[WS(rs, 1)]));
Chris@19 155 ST(&(x[WS(rs, 5)]), VSUB(Tg, Th), ms, &(x[WS(rs, 1)]));
Chris@19 156 Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tk, Tj)));
Chris@19 157 Tl = VADD(Tj, Tk);
Chris@19 158 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@19 159 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@19 160 ST(&(x[WS(rs, 4)]), VADD(Tm, Tn), ms, &(x[0]));
Chris@19 161 ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
Chris@19 162 }
Chris@19 163 }
Chris@19 164 }
Chris@19 165 VLEAVE();
Chris@19 166 }
Chris@19 167
Chris@19 168 static const tw_instr twinstr[] = {
Chris@19 169 VTW(0, 1),
Chris@19 170 VTW(0, 2),
Chris@19 171 VTW(0, 3),
Chris@19 172 VTW(0, 4),
Chris@19 173 VTW(0, 5),
Chris@19 174 {TW_NEXT, VL, 0}
Chris@19 175 };
Chris@19 176
Chris@19 177 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 };
Chris@19 178
Chris@19 179 void XSIMD(codelet_t1fv_6) (planner *p) {
Chris@19 180 X(kdft_dit_register) (p, t1fv_6, &desc);
Chris@19 181 }
Chris@19 182 #endif /* HAVE_FMA */