annotate fft/fftw/fftw-3.3.4/dft/simd/common/t1fv_15.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:15 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 92 FP additions, 77 FP multiplications,
Chris@19 32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
Chris@19 33 * 81 stack variables, 8 constants, and 30 memory accesses
Chris@19 34 */
Chris@19 35 #include "t1f.h"
Chris@19 36
Chris@19 37 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@19 40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
Chris@19 41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 47 {
Chris@19 48 INT m;
Chris@19 49 R *x;
Chris@19 50 x = ri;
Chris@19 51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
Chris@19 52 V Tq, Ty, Th, T1b, T10, Ts, TP, T7, Tu, TA, TC, Tj, Tk, TQ, Tf;
Chris@19 53 {
Chris@19 54 V T1, T4, T2, T9, Te;
Chris@19 55 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@19 57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 58 {
Chris@19 59 V T8, Tp, Tx, Tg;
Chris@19 60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@19 63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@19 64 {
Chris@19 65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti;
Chris@19 66 {
Chris@19 67 V T5, T3, Ta, Tc;
Chris@19 68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@19 69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@19 70 T5 = BYTWJ(&(W[TWVL * 18]), T4);
Chris@19 71 T3 = BYTWJ(&(W[TWVL * 8]), T2);
Chris@19 72 T9 = BYTWJ(&(W[TWVL * 4]), T8);
Chris@19 73 Tq = BYTWJ(&(W[TWVL * 10]), Tp);
Chris@19 74 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
Chris@19 75 Th = BYTWJ(&(W[TWVL * 22]), Tg);
Chris@19 76 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
Chris@19 77 Td = BYTWJ(&(W[TWVL * 24]), Tc);
Chris@19 78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@19 79 T1b = VSUB(T5, T3);
Chris@19 80 T6 = VADD(T3, T5);
Chris@19 81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 82 }
Chris@19 83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@19 84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 86 Te = VADD(Tb, Td);
Chris@19 87 T10 = VSUB(Td, Tb);
Chris@19 88 Ts = BYTWJ(&(W[TWVL * 20]), Tr);
Chris@19 89 TP = VFNMS(LDK(KP500000000), T6, T1);
Chris@19 90 T7 = VADD(T1, T6);
Chris@19 91 Tu = BYTWJ(&(W[0]), Tt);
Chris@19 92 TA = BYTWJ(&(W[TWVL * 26]), Tz);
Chris@19 93 TC = BYTWJ(&(W[TWVL * 6]), TB);
Chris@19 94 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
Chris@19 95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 96 }
Chris@19 97 }
Chris@19 98 TQ = VFNMS(LDK(KP500000000), Te, T9);
Chris@19 99 Tf = VADD(T9, Te);
Chris@19 100 }
Chris@19 101 {
Chris@19 102 V Tv, T13, TD, T14, Tl;
Chris@19 103 Tv = VADD(Ts, Tu);
Chris@19 104 T13 = VSUB(Tu, Ts);
Chris@19 105 TD = VADD(TA, TC);
Chris@19 106 T14 = VSUB(TC, TA);
Chris@19 107 Tl = BYTWJ(&(W[TWVL * 12]), Tk);
Chris@19 108 {
Chris@19 109 V TT, Tw, T1d, T15, TU, TE, T11, Tm;
Chris@19 110 TT = VFNMS(LDK(KP500000000), Tv, Tq);
Chris@19 111 Tw = VADD(Tq, Tv);
Chris@19 112 T1d = VADD(T13, T14);
Chris@19 113 T15 = VSUB(T13, T14);
Chris@19 114 TU = VFNMS(LDK(KP500000000), TD, Ty);
Chris@19 115 TE = VADD(Ty, TD);
Chris@19 116 T11 = VSUB(Tl, Tj);
Chris@19 117 Tm = VADD(Tj, Tl);
Chris@19 118 {
Chris@19 119 V T19, TV, TK, TF, T1c, T12, TR, Tn;
Chris@19 120 T19 = VSUB(TT, TU);
Chris@19 121 TV = VADD(TT, TU);
Chris@19 122 TK = VSUB(Tw, TE);
Chris@19 123 TF = VADD(Tw, TE);
Chris@19 124 T1c = VADD(T10, T11);
Chris@19 125 T12 = VSUB(T10, T11);
Chris@19 126 TR = VFNMS(LDK(KP500000000), Tm, Th);
Chris@19 127 Tn = VADD(Th, Tm);
Chris@19 128 {
Chris@19 129 V T1g, T1e, T1m, T16, T18, TS, TL, To, T1f, T1u;
Chris@19 130 T1g = VSUB(T1c, T1d);
Chris@19 131 T1e = VADD(T1c, T1d);
Chris@19 132 T1m = VFNMS(LDK(KP618033988), T12, T15);
Chris@19 133 T16 = VFMA(LDK(KP618033988), T15, T12);
Chris@19 134 T18 = VSUB(TQ, TR);
Chris@19 135 TS = VADD(TQ, TR);
Chris@19 136 TL = VSUB(Tf, Tn);
Chris@19 137 To = VADD(Tf, Tn);
Chris@19 138 T1f = VFNMS(LDK(KP250000000), T1e, T1b);
Chris@19 139 T1u = VMUL(LDK(KP866025403), VADD(T1b, T1e));
Chris@19 140 {
Chris@19 141 V T1o, T1a, TY, TO, TM, TG, TI, T1p, T1h, T1t, TX, TW;
Chris@19 142 T1o = VFNMS(LDK(KP618033988), T18, T19);
Chris@19 143 T1a = VFMA(LDK(KP618033988), T19, T18);
Chris@19 144 TW = VADD(TS, TV);
Chris@19 145 TY = VSUB(TS, TV);
Chris@19 146 TO = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TK, TL));
Chris@19 147 TM = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TL, TK));
Chris@19 148 TG = VADD(To, TF);
Chris@19 149 TI = VSUB(To, TF);
Chris@19 150 T1p = VFNMS(LDK(KP559016994), T1g, T1f);
Chris@19 151 T1h = VFMA(LDK(KP559016994), T1g, T1f);
Chris@19 152 T1t = VADD(TP, TW);
Chris@19 153 TX = VFNMS(LDK(KP250000000), TW, TP);
Chris@19 154 {
Chris@19 155 V T1q, T1s, T1k, T1i, T1l, TZ, TJ, TN, TH;
Chris@19 156 ST(&(x[0]), VADD(T7, TG), ms, &(x[0]));
Chris@19 157 TH = VFNMS(LDK(KP250000000), TG, T7);
Chris@19 158 T1q = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1p, T1o));
Chris@19 159 T1s = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1p, T1o));
Chris@19 160 T1k = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1h, T1a));
Chris@19 161 T1i = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1h, T1a));
Chris@19 162 ST(&(x[WS(rs, 10)]), VFMAI(T1u, T1t), ms, &(x[0]));
Chris@19 163 ST(&(x[WS(rs, 5)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
Chris@19 164 T1l = VFNMS(LDK(KP559016994), TY, TX);
Chris@19 165 TZ = VFMA(LDK(KP559016994), TY, TX);
Chris@19 166 TJ = VFNMS(LDK(KP559016994), TI, TH);
Chris@19 167 TN = VFMA(LDK(KP559016994), TI, TH);
Chris@19 168 {
Chris@19 169 V T1n, T1r, T1j, T17;
Chris@19 170 T1n = VFMA(LDK(KP823639103), T1m, T1l);
Chris@19 171 T1r = VFNMS(LDK(KP823639103), T1m, T1l);
Chris@19 172 T1j = VFNMS(LDK(KP823639103), T16, TZ);
Chris@19 173 T17 = VFMA(LDK(KP823639103), T16, TZ);
Chris@19 174 ST(&(x[WS(rs, 12)]), VFMAI(TM, TJ), ms, &(x[0]));
Chris@19 175 ST(&(x[WS(rs, 3)]), VFNMSI(TM, TJ), ms, &(x[WS(rs, 1)]));
Chris@19 176 ST(&(x[WS(rs, 9)]), VFMAI(TO, TN), ms, &(x[WS(rs, 1)]));
Chris@19 177 ST(&(x[WS(rs, 6)]), VFNMSI(TO, TN), ms, &(x[0]));
Chris@19 178 ST(&(x[WS(rs, 2)]), VFMAI(T1q, T1n), ms, &(x[0]));
Chris@19 179 ST(&(x[WS(rs, 13)]), VFNMSI(T1q, T1n), ms, &(x[WS(rs, 1)]));
Chris@19 180 ST(&(x[WS(rs, 7)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)]));
Chris@19 181 ST(&(x[WS(rs, 8)]), VFNMSI(T1s, T1r), ms, &(x[0]));
Chris@19 182 ST(&(x[WS(rs, 4)]), VFMAI(T1k, T1j), ms, &(x[0]));
Chris@19 183 ST(&(x[WS(rs, 11)]), VFNMSI(T1k, T1j), ms, &(x[WS(rs, 1)]));
Chris@19 184 ST(&(x[WS(rs, 14)]), VFMAI(T1i, T17), ms, &(x[0]));
Chris@19 185 ST(&(x[WS(rs, 1)]), VFNMSI(T1i, T17), ms, &(x[WS(rs, 1)]));
Chris@19 186 }
Chris@19 187 }
Chris@19 188 }
Chris@19 189 }
Chris@19 190 }
Chris@19 191 }
Chris@19 192 }
Chris@19 193 }
Chris@19 194 }
Chris@19 195 VLEAVE();
Chris@19 196 }
Chris@19 197
Chris@19 198 static const tw_instr twinstr[] = {
Chris@19 199 VTW(0, 1),
Chris@19 200 VTW(0, 2),
Chris@19 201 VTW(0, 3),
Chris@19 202 VTW(0, 4),
Chris@19 203 VTW(0, 5),
Chris@19 204 VTW(0, 6),
Chris@19 205 VTW(0, 7),
Chris@19 206 VTW(0, 8),
Chris@19 207 VTW(0, 9),
Chris@19 208 VTW(0, 10),
Chris@19 209 VTW(0, 11),
Chris@19 210 VTW(0, 12),
Chris@19 211 VTW(0, 13),
Chris@19 212 VTW(0, 14),
Chris@19 213 {TW_NEXT, VL, 0}
Chris@19 214 };
Chris@19 215
Chris@19 216 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
Chris@19 217
Chris@19 218 void XSIMD(codelet_t1fv_15) (planner *p) {
Chris@19 219 X(kdft_dit_register) (p, t1fv_15, &desc);
Chris@19 220 }
Chris@19 221 #else /* HAVE_FMA */
Chris@19 222
Chris@19 223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */
Chris@19 224
Chris@19 225 /*
Chris@19 226 * This function contains 92 FP additions, 53 FP multiplications,
Chris@19 227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
Chris@19 228 * 52 stack variables, 10 constants, and 30 memory accesses
Chris@19 229 */
Chris@19 230 #include "t1f.h"
Chris@19 231
Chris@19 232 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 233 {
Chris@19 234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
Chris@19 235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
Chris@19 236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
Chris@19 238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@19 239 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 240 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 244 {
Chris@19 245 INT m;
Chris@19 246 R *x;
Chris@19 247 x = ri;
Chris@19 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
Chris@19 249 V T1e, T7, TP, T12, T15, Tf, Tn, To, T1b, T1c, T1f, TQ, TR, TS, Tw;
Chris@19 250 V TE, TF, TT, TU, TV;
Chris@19 251 {
Chris@19 252 V T1, T5, T3, T4, T2, T6;
Chris@19 253 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 254 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@19 255 T5 = BYTWJ(&(W[TWVL * 18]), T4);
Chris@19 256 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 257 T3 = BYTWJ(&(W[TWVL * 8]), T2);
Chris@19 258 T1e = VSUB(T5, T3);
Chris@19 259 T6 = VADD(T3, T5);
Chris@19 260 T7 = VADD(T1, T6);
Chris@19 261 TP = VFNMS(LDK(KP500000000), T6, T1);
Chris@19 262 }
Chris@19 263 {
Chris@19 264 V T9, Tq, Ty, Th, Te, T13, Tv, T10, TD, T11, Tm, T14;
Chris@19 265 {
Chris@19 266 V T8, Tp, Tx, Tg;
Chris@19 267 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 268 T9 = BYTWJ(&(W[TWVL * 4]), T8);
Chris@19 269 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 270 Tq = BYTWJ(&(W[TWVL * 10]), Tp);
Chris@19 271 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@19 272 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
Chris@19 273 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@19 274 Th = BYTWJ(&(W[TWVL * 22]), Tg);
Chris@19 275 }
Chris@19 276 {
Chris@19 277 V Tb, Td, Ta, Tc;
Chris@19 278 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@19 279 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
Chris@19 280 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@19 281 Td = BYTWJ(&(W[TWVL * 24]), Tc);
Chris@19 282 Te = VADD(Tb, Td);
Chris@19 283 T13 = VSUB(Td, Tb);
Chris@19 284 }
Chris@19 285 {
Chris@19 286 V Ts, Tu, Tr, Tt;
Chris@19 287 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@19 288 Ts = BYTWJ(&(W[TWVL * 20]), Tr);
Chris@19 289 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 290 Tu = BYTWJ(&(W[0]), Tt);
Chris@19 291 Tv = VADD(Ts, Tu);
Chris@19 292 T10 = VSUB(Tu, Ts);
Chris@19 293 }
Chris@19 294 {
Chris@19 295 V TA, TC, Tz, TB;
Chris@19 296 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@19 297 TA = BYTWJ(&(W[TWVL * 26]), Tz);
Chris@19 298 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 299 TC = BYTWJ(&(W[TWVL * 6]), TB);
Chris@19 300 TD = VADD(TA, TC);
Chris@19 301 T11 = VSUB(TC, TA);
Chris@19 302 }
Chris@19 303 {
Chris@19 304 V Tj, Tl, Ti, Tk;
Chris@19 305 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 306 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
Chris@19 307 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 308 Tl = BYTWJ(&(W[TWVL * 12]), Tk);
Chris@19 309 Tm = VADD(Tj, Tl);
Chris@19 310 T14 = VSUB(Tl, Tj);
Chris@19 311 }
Chris@19 312 T12 = VSUB(T10, T11);
Chris@19 313 T15 = VSUB(T13, T14);
Chris@19 314 Tf = VADD(T9, Te);
Chris@19 315 Tn = VADD(Th, Tm);
Chris@19 316 To = VADD(Tf, Tn);
Chris@19 317 T1b = VADD(T13, T14);
Chris@19 318 T1c = VADD(T10, T11);
Chris@19 319 T1f = VADD(T1b, T1c);
Chris@19 320 TQ = VFNMS(LDK(KP500000000), Te, T9);
Chris@19 321 TR = VFNMS(LDK(KP500000000), Tm, Th);
Chris@19 322 TS = VADD(TQ, TR);
Chris@19 323 Tw = VADD(Tq, Tv);
Chris@19 324 TE = VADD(Ty, TD);
Chris@19 325 TF = VADD(Tw, TE);
Chris@19 326 TT = VFNMS(LDK(KP500000000), Tv, Tq);
Chris@19 327 TU = VFNMS(LDK(KP500000000), TD, Ty);
Chris@19 328 TV = VADD(TT, TU);
Chris@19 329 }
Chris@19 330 {
Chris@19 331 V TI, TG, TH, TM, TO, TK, TL, TN, TJ;
Chris@19 332 TI = VMUL(LDK(KP559016994), VSUB(To, TF));
Chris@19 333 TG = VADD(To, TF);
Chris@19 334 TH = VFNMS(LDK(KP250000000), TG, T7);
Chris@19 335 TK = VSUB(Tw, TE);
Chris@19 336 TL = VSUB(Tf, Tn);
Chris@19 337 TM = VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TK)));
Chris@19 338 TO = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TK)));
Chris@19 339 ST(&(x[0]), VADD(T7, TG), ms, &(x[0]));
Chris@19 340 TN = VADD(TI, TH);
Chris@19 341 ST(&(x[WS(rs, 6)]), VSUB(TN, TO), ms, &(x[0]));
Chris@19 342 ST(&(x[WS(rs, 9)]), VADD(TO, TN), ms, &(x[WS(rs, 1)]));
Chris@19 343 TJ = VSUB(TH, TI);
Chris@19 344 ST(&(x[WS(rs, 3)]), VSUB(TJ, TM), ms, &(x[WS(rs, 1)]));
Chris@19 345 ST(&(x[WS(rs, 12)]), VADD(TM, TJ), ms, &(x[0]));
Chris@19 346 }
Chris@19 347 {
Chris@19 348 V T16, T1m, T1u, T1h, T1o, T1a, T1p, TZ, T1t, T1l, T1d, T1g;
Chris@19 349 T16 = VFNMS(LDK(KP509036960), T15, VMUL(LDK(KP823639103), T12));
Chris@19 350 T1m = VFMA(LDK(KP823639103), T15, VMUL(LDK(KP509036960), T12));
Chris@19 351 T1u = VBYI(VMUL(LDK(KP866025403), VADD(T1e, T1f)));
Chris@19 352 T1d = VMUL(LDK(KP484122918), VSUB(T1b, T1c));
Chris@19 353 T1g = VFNMS(LDK(KP216506350), T1f, VMUL(LDK(KP866025403), T1e));
Chris@19 354 T1h = VSUB(T1d, T1g);
Chris@19 355 T1o = VADD(T1d, T1g);
Chris@19 356 {
Chris@19 357 V T18, T19, TY, TW, TX;
Chris@19 358 T18 = VSUB(TT, TU);
Chris@19 359 T19 = VSUB(TQ, TR);
Chris@19 360 T1a = VFNMS(LDK(KP587785252), T19, VMUL(LDK(KP951056516), T18));
Chris@19 361 T1p = VFMA(LDK(KP951056516), T19, VMUL(LDK(KP587785252), T18));
Chris@19 362 TY = VMUL(LDK(KP559016994), VSUB(TS, TV));
Chris@19 363 TW = VADD(TS, TV);
Chris@19 364 TX = VFNMS(LDK(KP250000000), TW, TP);
Chris@19 365 TZ = VSUB(TX, TY);
Chris@19 366 T1t = VADD(TP, TW);
Chris@19 367 T1l = VADD(TY, TX);
Chris@19 368 }
Chris@19 369 {
Chris@19 370 V T17, T1i, T1r, T1s;
Chris@19 371 ST(&(x[WS(rs, 5)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)]));
Chris@19 372 ST(&(x[WS(rs, 10)]), VADD(T1t, T1u), ms, &(x[0]));
Chris@19 373 T17 = VSUB(TZ, T16);
Chris@19 374 T1i = VBYI(VSUB(T1a, T1h));
Chris@19 375 ST(&(x[WS(rs, 8)]), VSUB(T17, T1i), ms, &(x[0]));
Chris@19 376 ST(&(x[WS(rs, 7)]), VADD(T17, T1i), ms, &(x[WS(rs, 1)]));
Chris@19 377 T1r = VSUB(T1l, T1m);
Chris@19 378 T1s = VBYI(VADD(T1p, T1o));
Chris@19 379 ST(&(x[WS(rs, 11)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)]));
Chris@19 380 ST(&(x[WS(rs, 4)]), VADD(T1r, T1s), ms, &(x[0]));
Chris@19 381 {
Chris@19 382 V T1n, T1q, T1j, T1k;
Chris@19 383 T1n = VADD(T1l, T1m);
Chris@19 384 T1q = VBYI(VSUB(T1o, T1p));
Chris@19 385 ST(&(x[WS(rs, 14)]), VSUB(T1n, T1q), ms, &(x[0]));
Chris@19 386 ST(&(x[WS(rs, 1)]), VADD(T1n, T1q), ms, &(x[WS(rs, 1)]));
Chris@19 387 T1j = VADD(TZ, T16);
Chris@19 388 T1k = VBYI(VADD(T1a, T1h));
Chris@19 389 ST(&(x[WS(rs, 13)]), VSUB(T1j, T1k), ms, &(x[WS(rs, 1)]));
Chris@19 390 ST(&(x[WS(rs, 2)]), VADD(T1j, T1k), ms, &(x[0]));
Chris@19 391 }
Chris@19 392 }
Chris@19 393 }
Chris@19 394 }
Chris@19 395 }
Chris@19 396 VLEAVE();
Chris@19 397 }
Chris@19 398
Chris@19 399 static const tw_instr twinstr[] = {
Chris@19 400 VTW(0, 1),
Chris@19 401 VTW(0, 2),
Chris@19 402 VTW(0, 3),
Chris@19 403 VTW(0, 4),
Chris@19 404 VTW(0, 5),
Chris@19 405 VTW(0, 6),
Chris@19 406 VTW(0, 7),
Chris@19 407 VTW(0, 8),
Chris@19 408 VTW(0, 9),
Chris@19 409 VTW(0, 10),
Chris@19 410 VTW(0, 11),
Chris@19 411 VTW(0, 12),
Chris@19 412 VTW(0, 13),
Chris@19 413 VTW(0, 14),
Chris@19 414 {TW_NEXT, VL, 0}
Chris@19 415 };
Chris@19 416
Chris@19 417 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
Chris@19 418
Chris@19 419 void XSIMD(codelet_t1fv_15) (planner *p) {
Chris@19 420 X(kdft_dit_register) (p, t1fv_15, &desc);
Chris@19 421 }
Chris@19 422 #endif /* HAVE_FMA */