annotate fft/fftw/fftw-3.3.4/dft/simd/common/t1fuv_5.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:12 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1fuv_5 -include t1fu.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 20 FP additions, 19 FP multiplications,
Chris@19 32 * (or, 11 additions, 10 multiplications, 9 fused multiply/add),
Chris@19 33 * 26 stack variables, 4 constants, and 10 memory accesses
Chris@19 34 */
Chris@19 35 #include "t1fu.h"
Chris@19 36
Chris@19 37 static void t1fuv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@19 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 43 {
Chris@19 44 INT m;
Chris@19 45 R *x;
Chris@19 46 x = ri;
Chris@19 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@19 48 V T1, T2, T9, T4, T7;
Chris@19 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 50 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 51 T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 52 T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 53 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 54 {
Chris@19 55 V T3, Ta, T5, T8;
Chris@19 56 T3 = BYTWJ(&(W[0]), T2);
Chris@19 57 Ta = BYTWJ(&(W[TWVL * 4]), T9);
Chris@19 58 T5 = BYTWJ(&(W[TWVL * 6]), T4);
Chris@19 59 T8 = BYTWJ(&(W[TWVL * 2]), T7);
Chris@19 60 {
Chris@19 61 V T6, Tg, Tb, Th;
Chris@19 62 T6 = VADD(T3, T5);
Chris@19 63 Tg = VSUB(T3, T5);
Chris@19 64 Tb = VADD(T8, Ta);
Chris@19 65 Th = VSUB(T8, Ta);
Chris@19 66 {
Chris@19 67 V Te, Tc, Tk, Ti, Td, Tj, Tf;
Chris@19 68 Te = VSUB(T6, Tb);
Chris@19 69 Tc = VADD(T6, Tb);
Chris@19 70 Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th));
Chris@19 71 Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg));
Chris@19 72 Td = VFNMS(LDK(KP250000000), Tc, T1);
Chris@19 73 ST(&(x[0]), VADD(T1, Tc), ms, &(x[0]));
Chris@19 74 Tj = VFNMS(LDK(KP559016994), Te, Td);
Chris@19 75 Tf = VFMA(LDK(KP559016994), Te, Td);
Chris@19 76 ST(&(x[WS(rs, 2)]), VFMAI(Tk, Tj), ms, &(x[0]));
Chris@19 77 ST(&(x[WS(rs, 3)]), VFNMSI(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@19 78 ST(&(x[WS(rs, 4)]), VFMAI(Ti, Tf), ms, &(x[0]));
Chris@19 79 ST(&(x[WS(rs, 1)]), VFNMSI(Ti, Tf), ms, &(x[WS(rs, 1)]));
Chris@19 80 }
Chris@19 81 }
Chris@19 82 }
Chris@19 83 }
Chris@19 84 }
Chris@19 85 VLEAVE();
Chris@19 86 }
Chris@19 87
Chris@19 88 static const tw_instr twinstr[] = {
Chris@19 89 VTW(0, 1),
Chris@19 90 VTW(0, 2),
Chris@19 91 VTW(0, 3),
Chris@19 92 VTW(0, 4),
Chris@19 93 {TW_NEXT, VL, 0}
Chris@19 94 };
Chris@19 95
Chris@19 96 static const ct_desc desc = { 5, XSIMD_STRING("t1fuv_5"), twinstr, &GENUS, {11, 10, 9, 0}, 0, 0, 0 };
Chris@19 97
Chris@19 98 void XSIMD(codelet_t1fuv_5) (planner *p) {
Chris@19 99 X(kdft_dit_register) (p, t1fuv_5, &desc);
Chris@19 100 }
Chris@19 101 #else /* HAVE_FMA */
Chris@19 102
Chris@19 103 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1fuv_5 -include t1fu.h */
Chris@19 104
Chris@19 105 /*
Chris@19 106 * This function contains 20 FP additions, 14 FP multiplications,
Chris@19 107 * (or, 17 additions, 11 multiplications, 3 fused multiply/add),
Chris@19 108 * 20 stack variables, 4 constants, and 10 memory accesses
Chris@19 109 */
Chris@19 110 #include "t1fu.h"
Chris@19 111
Chris@19 112 static void t1fuv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 113 {
Chris@19 114 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@19 115 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@19 116 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@19 117 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@19 118 {
Chris@19 119 INT m;
Chris@19 120 R *x;
Chris@19 121 x = ri;
Chris@19 122 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@19 123 V Tc, Tg, Th, T5, Ta, Td;
Chris@19 124 Tc = LD(&(x[0]), ms, &(x[0]));
Chris@19 125 {
Chris@19 126 V T2, T9, T4, T7;
Chris@19 127 {
Chris@19 128 V T1, T8, T3, T6;
Chris@19 129 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 130 T2 = BYTWJ(&(W[0]), T1);
Chris@19 131 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 132 T9 = BYTWJ(&(W[TWVL * 4]), T8);
Chris@19 133 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 134 T4 = BYTWJ(&(W[TWVL * 6]), T3);
Chris@19 135 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 136 T7 = BYTWJ(&(W[TWVL * 2]), T6);
Chris@19 137 }
Chris@19 138 Tg = VSUB(T2, T4);
Chris@19 139 Th = VSUB(T7, T9);
Chris@19 140 T5 = VADD(T2, T4);
Chris@19 141 Ta = VADD(T7, T9);
Chris@19 142 Td = VADD(T5, Ta);
Chris@19 143 }
Chris@19 144 ST(&(x[0]), VADD(Tc, Td), ms, &(x[0]));
Chris@19 145 {
Chris@19 146 V Ti, Tj, Tf, Tk, Tb, Te;
Chris@19 147 Ti = VBYI(VFMA(LDK(KP951056516), Tg, VMUL(LDK(KP587785252), Th)));
Chris@19 148 Tj = VBYI(VFNMS(LDK(KP587785252), Tg, VMUL(LDK(KP951056516), Th)));
Chris@19 149 Tb = VMUL(LDK(KP559016994), VSUB(T5, Ta));
Chris@19 150 Te = VFNMS(LDK(KP250000000), Td, Tc);
Chris@19 151 Tf = VADD(Tb, Te);
Chris@19 152 Tk = VSUB(Te, Tb);
Chris@19 153 ST(&(x[WS(rs, 1)]), VSUB(Tf, Ti), ms, &(x[WS(rs, 1)]));
Chris@19 154 ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@19 155 ST(&(x[WS(rs, 4)]), VADD(Ti, Tf), ms, &(x[0]));
Chris@19 156 ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0]));
Chris@19 157 }
Chris@19 158 }
Chris@19 159 }
Chris@19 160 VLEAVE();
Chris@19 161 }
Chris@19 162
Chris@19 163 static const tw_instr twinstr[] = {
Chris@19 164 VTW(0, 1),
Chris@19 165 VTW(0, 2),
Chris@19 166 VTW(0, 3),
Chris@19 167 VTW(0, 4),
Chris@19 168 {TW_NEXT, VL, 0}
Chris@19 169 };
Chris@19 170
Chris@19 171 static const ct_desc desc = { 5, XSIMD_STRING("t1fuv_5"), twinstr, &GENUS, {17, 11, 3, 0}, 0, 0, 0 };
Chris@19 172
Chris@19 173 void XSIMD(codelet_t1fuv_5) (planner *p) {
Chris@19 174 X(kdft_dit_register) (p, t1fuv_5, &desc);
Chris@19 175 }
Chris@19 176 #endif /* HAVE_FMA */