annotate fft/fftw/fftw-3.3.4/dft/simd/common/t1bv_8.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:33 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1bv_8 -include t1b.h -sign 1 */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 33 FP additions, 24 FP multiplications,
Chris@19 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
Chris@19 33 * 36 stack variables, 1 constants, and 16 memory accesses
Chris@19 34 */
Chris@19 35 #include "t1b.h"
Chris@19 36
Chris@19 37 static void t1bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 40 {
Chris@19 41 INT m;
Chris@19 42 R *x;
Chris@19 43 x = ii;
Chris@19 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@19 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
Chris@19 46 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 54 {
Chris@19 55 V T3, Ti, Tk, T6, T8, Tb, Td;
Chris@19 56 T3 = BYTW(&(W[TWVL * 6]), T2);
Chris@19 57 Ti = BYTW(&(W[TWVL * 2]), Th);
Chris@19 58 Tk = BYTW(&(W[TWVL * 10]), Tj);
Chris@19 59 T6 = BYTW(&(W[0]), T5);
Chris@19 60 T8 = BYTW(&(W[TWVL * 8]), T7);
Chris@19 61 Tb = BYTW(&(W[TWVL * 12]), Ta);
Chris@19 62 Td = BYTW(&(W[TWVL * 4]), Tc);
Chris@19 63 {
Chris@19 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
Chris@19 65 Tq = VADD(T1, T3);
Chris@19 66 T4 = VSUB(T1, T3);
Chris@19 67 Tr = VADD(Ti, Tk);
Chris@19 68 Tl = VSUB(Ti, Tk);
Chris@19 69 Tt = VADD(T6, T8);
Chris@19 70 T9 = VSUB(T6, T8);
Chris@19 71 Tu = VADD(Tb, Td);
Chris@19 72 Te = VSUB(Tb, Td);
Chris@19 73 Tw = VADD(Tq, Tr);
Chris@19 74 Ts = VSUB(Tq, Tr);
Chris@19 75 {
Chris@19 76 V Tx, Tv, Tm, Tf;
Chris@19 77 Tx = VADD(Tt, Tu);
Chris@19 78 Tv = VSUB(Tt, Tu);
Chris@19 79 Tm = VSUB(T9, Te);
Chris@19 80 Tf = VADD(T9, Te);
Chris@19 81 {
Chris@19 82 V Tp, Tn, To, Tg;
Chris@19 83 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
Chris@19 84 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@19 85 ST(&(x[WS(rs, 2)]), VFMAI(Tv, Ts), ms, &(x[0]));
Chris@19 86 ST(&(x[WS(rs, 6)]), VFNMSI(Tv, Ts), ms, &(x[0]));
Chris@19 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
Chris@19 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
Chris@19 89 To = VFMA(LDK(KP707106781), Tf, T4);
Chris@19 90 Tg = VFNMS(LDK(KP707106781), Tf, T4);
Chris@19 91 ST(&(x[WS(rs, 1)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@19 92 ST(&(x[WS(rs, 7)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@19 93 ST(&(x[WS(rs, 5)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 94 ST(&(x[WS(rs, 3)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 95 }
Chris@19 96 }
Chris@19 97 }
Chris@19 98 }
Chris@19 99 }
Chris@19 100 }
Chris@19 101 VLEAVE();
Chris@19 102 }
Chris@19 103
Chris@19 104 static const tw_instr twinstr[] = {
Chris@19 105 VTW(0, 1),
Chris@19 106 VTW(0, 2),
Chris@19 107 VTW(0, 3),
Chris@19 108 VTW(0, 4),
Chris@19 109 VTW(0, 5),
Chris@19 110 VTW(0, 6),
Chris@19 111 VTW(0, 7),
Chris@19 112 {TW_NEXT, VL, 0}
Chris@19 113 };
Chris@19 114
Chris@19 115 static const ct_desc desc = { 8, XSIMD_STRING("t1bv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
Chris@19 116
Chris@19 117 void XSIMD(codelet_t1bv_8) (planner *p) {
Chris@19 118 X(kdft_dit_register) (p, t1bv_8, &desc);
Chris@19 119 }
Chris@19 120 #else /* HAVE_FMA */
Chris@19 121
Chris@19 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1bv_8 -include t1b.h -sign 1 */
Chris@19 123
Chris@19 124 /*
Chris@19 125 * This function contains 33 FP additions, 16 FP multiplications,
Chris@19 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
Chris@19 127 * 24 stack variables, 1 constants, and 16 memory accesses
Chris@19 128 */
Chris@19 129 #include "t1b.h"
Chris@19 130
Chris@19 131 static void t1bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 132 {
Chris@19 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@19 134 {
Chris@19 135 INT m;
Chris@19 136 R *x;
Chris@19 137 x = ii;
Chris@19 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@19 139 V Tl, Tq, Tg, Tr, T5, Tt, Ta, Tu, Ti, Tk, Tj;
Chris@19 140 Ti = LD(&(x[0]), ms, &(x[0]));
Chris@19 141 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 142 Tk = BYTW(&(W[TWVL * 6]), Tj);
Chris@19 143 Tl = VSUB(Ti, Tk);
Chris@19 144 Tq = VADD(Ti, Tk);
Chris@19 145 {
Chris@19 146 V Td, Tf, Tc, Te;
Chris@19 147 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 148 Td = BYTW(&(W[TWVL * 2]), Tc);
Chris@19 149 Te = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 150 Tf = BYTW(&(W[TWVL * 10]), Te);
Chris@19 151 Tg = VSUB(Td, Tf);
Chris@19 152 Tr = VADD(Td, Tf);
Chris@19 153 }
Chris@19 154 {
Chris@19 155 V T2, T4, T1, T3;
Chris@19 156 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 157 T2 = BYTW(&(W[0]), T1);
Chris@19 158 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 159 T4 = BYTW(&(W[TWVL * 8]), T3);
Chris@19 160 T5 = VSUB(T2, T4);
Chris@19 161 Tt = VADD(T2, T4);
Chris@19 162 }
Chris@19 163 {
Chris@19 164 V T7, T9, T6, T8;
Chris@19 165 T6 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 166 T7 = BYTW(&(W[TWVL * 12]), T6);
Chris@19 167 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 168 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@19 169 Ta = VSUB(T7, T9);
Chris@19 170 Tu = VADD(T7, T9);
Chris@19 171 }
Chris@19 172 {
Chris@19 173 V Ts, Tv, Tw, Tx;
Chris@19 174 Ts = VSUB(Tq, Tr);
Chris@19 175 Tv = VBYI(VSUB(Tt, Tu));
Chris@19 176 ST(&(x[WS(rs, 6)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@19 177 ST(&(x[WS(rs, 2)]), VADD(Ts, Tv), ms, &(x[0]));
Chris@19 178 Tw = VADD(Tq, Tr);
Chris@19 179 Tx = VADD(Tt, Tu);
Chris@19 180 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@19 181 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
Chris@19 182 {
Chris@19 183 V Th, To, Tn, Tp, Tb, Tm;
Chris@19 184 Tb = VMUL(LDK(KP707106781), VSUB(T5, Ta));
Chris@19 185 Th = VBYI(VSUB(Tb, Tg));
Chris@19 186 To = VBYI(VADD(Tg, Tb));
Chris@19 187 Tm = VMUL(LDK(KP707106781), VADD(T5, Ta));
Chris@19 188 Tn = VSUB(Tl, Tm);
Chris@19 189 Tp = VADD(Tl, Tm);
Chris@19 190 ST(&(x[WS(rs, 3)]), VADD(Th, Tn), ms, &(x[WS(rs, 1)]));
Chris@19 191 ST(&(x[WS(rs, 7)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@19 192 ST(&(x[WS(rs, 5)]), VSUB(Tn, Th), ms, &(x[WS(rs, 1)]));
Chris@19 193 ST(&(x[WS(rs, 1)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@19 194 }
Chris@19 195 }
Chris@19 196 }
Chris@19 197 }
Chris@19 198 VLEAVE();
Chris@19 199 }
Chris@19 200
Chris@19 201 static const tw_instr twinstr[] = {
Chris@19 202 VTW(0, 1),
Chris@19 203 VTW(0, 2),
Chris@19 204 VTW(0, 3),
Chris@19 205 VTW(0, 4),
Chris@19 206 VTW(0, 5),
Chris@19 207 VTW(0, 6),
Chris@19 208 VTW(0, 7),
Chris@19 209 {TW_NEXT, VL, 0}
Chris@19 210 };
Chris@19 211
Chris@19 212 static const ct_desc desc = { 8, XSIMD_STRING("t1bv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
Chris@19 213
Chris@19 214 void XSIMD(codelet_t1bv_8) (planner *p) {
Chris@19 215 X(kdft_dit_register) (p, t1bv_8, &desc);
Chris@19 216 }
Chris@19 217 #endif /* HAVE_FMA */