annotate fft/fftw/fftw-3.3.4/dft/simd/common/t1bv_12.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:34 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 59 FP additions, 42 FP multiplications,
Chris@19 32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
Chris@19 33 * 41 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "t1b.h"
Chris@19 36
Chris@19 37 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT m;
Chris@19 43 R *x;
Chris@19 44 x = ii;
Chris@19 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
Chris@19 46 V TI, Ti, TA, T7, Tm, TE, Tw, Tk, Tf, TB, TU, TM;
Chris@19 47 {
Chris@19 48 V T9, TK, Tj, TL, Te;
Chris@19 49 {
Chris@19 50 V T1, T4, T2, Tp, Tt, Tr;
Chris@19 51 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 52 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@19 53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 54 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@19 55 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 56 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 57 {
Chris@19 58 V T5, T3, Tq, Tu, Ts, Td, Tb, T8, Tc, Ta;
Chris@19 59 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 60 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 61 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@19 62 T5 = BYTW(&(W[TWVL * 14]), T4);
Chris@19 63 T3 = BYTW(&(W[TWVL * 6]), T2);
Chris@19 64 Tq = BYTW(&(W[TWVL * 16]), Tp);
Chris@19 65 Tu = BYTW(&(W[TWVL * 8]), Tt);
Chris@19 66 Ts = BYTW(&(W[0]), Tr);
Chris@19 67 T9 = BYTW(&(W[TWVL * 10]), T8);
Chris@19 68 Td = BYTW(&(W[TWVL * 2]), Tc);
Chris@19 69 Tb = BYTW(&(W[TWVL * 18]), Ta);
Chris@19 70 {
Chris@19 71 V Th, T6, Tl, Tv;
Chris@19 72 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 73 TK = VSUB(T3, T5);
Chris@19 74 T6 = VADD(T3, T5);
Chris@19 75 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@19 76 Tv = VADD(Ts, Tu);
Chris@19 77 TI = VSUB(Tu, Ts);
Chris@19 78 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 79 TL = VSUB(Tb, Td);
Chris@19 80 Te = VADD(Tb, Td);
Chris@19 81 Ti = BYTW(&(W[TWVL * 4]), Th);
Chris@19 82 TA = VFNMS(LDK(KP500000000), T6, T1);
Chris@19 83 T7 = VADD(T1, T6);
Chris@19 84 Tm = BYTW(&(W[TWVL * 20]), Tl);
Chris@19 85 TE = VFNMS(LDK(KP500000000), Tv, Tq);
Chris@19 86 Tw = VADD(Tq, Tv);
Chris@19 87 }
Chris@19 88 }
Chris@19 89 }
Chris@19 90 Tk = BYTW(&(W[TWVL * 12]), Tj);
Chris@19 91 Tf = VADD(T9, Te);
Chris@19 92 TB = VFNMS(LDK(KP500000000), Te, T9);
Chris@19 93 TU = VSUB(TK, TL);
Chris@19 94 TM = VADD(TK, TL);
Chris@19 95 }
Chris@19 96 {
Chris@19 97 V Tn, TH, TC, TQ, Ty, Tg;
Chris@19 98 Tn = VADD(Tk, Tm);
Chris@19 99 TH = VSUB(Tk, Tm);
Chris@19 100 TC = VADD(TA, TB);
Chris@19 101 TQ = VSUB(TA, TB);
Chris@19 102 Ty = VADD(T7, Tf);
Chris@19 103 Tg = VSUB(T7, Tf);
Chris@19 104 {
Chris@19 105 V To, TD, TJ, TR;
Chris@19 106 To = VADD(Ti, Tn);
Chris@19 107 TD = VFNMS(LDK(KP500000000), Tn, Ti);
Chris@19 108 TJ = VSUB(TH, TI);
Chris@19 109 TR = VADD(TH, TI);
Chris@19 110 {
Chris@19 111 V TP, TN, TW, TS, TO, TG, TX, TV;
Chris@19 112 {
Chris@19 113 V Tz, Tx, TF, TT;
Chris@19 114 Tz = VADD(To, Tw);
Chris@19 115 Tx = VSUB(To, Tw);
Chris@19 116 TF = VADD(TD, TE);
Chris@19 117 TT = VSUB(TD, TE);
Chris@19 118 TP = VMUL(LDK(KP866025403), VADD(TM, TJ));
Chris@19 119 TN = VMUL(LDK(KP866025403), VSUB(TJ, TM));
Chris@19 120 TW = VFMA(LDK(KP866025403), TR, TQ);
Chris@19 121 TS = VFNMS(LDK(KP866025403), TR, TQ);
Chris@19 122 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
Chris@19 123 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
Chris@19 124 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 125 ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)]));
Chris@19 126 TO = VADD(TC, TF);
Chris@19 127 TG = VSUB(TC, TF);
Chris@19 128 TX = VFNMS(LDK(KP866025403), TU, TT);
Chris@19 129 TV = VFMA(LDK(KP866025403), TU, TT);
Chris@19 130 }
Chris@19 131 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
Chris@19 132 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
Chris@19 133 ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0]));
Chris@19 134 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0]));
Chris@19 135 ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)]));
Chris@19 136 ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)]));
Chris@19 137 ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
Chris@19 138 ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
Chris@19 139 }
Chris@19 140 }
Chris@19 141 }
Chris@19 142 }
Chris@19 143 }
Chris@19 144 VLEAVE();
Chris@19 145 }
Chris@19 146
Chris@19 147 static const tw_instr twinstr[] = {
Chris@19 148 VTW(0, 1),
Chris@19 149 VTW(0, 2),
Chris@19 150 VTW(0, 3),
Chris@19 151 VTW(0, 4),
Chris@19 152 VTW(0, 5),
Chris@19 153 VTW(0, 6),
Chris@19 154 VTW(0, 7),
Chris@19 155 VTW(0, 8),
Chris@19 156 VTW(0, 9),
Chris@19 157 VTW(0, 10),
Chris@19 158 VTW(0, 11),
Chris@19 159 {TW_NEXT, VL, 0}
Chris@19 160 };
Chris@19 161
Chris@19 162 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
Chris@19 163
Chris@19 164 void XSIMD(codelet_t1bv_12) (planner *p) {
Chris@19 165 X(kdft_dit_register) (p, t1bv_12, &desc);
Chris@19 166 }
Chris@19 167 #else /* HAVE_FMA */
Chris@19 168
Chris@19 169 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */
Chris@19 170
Chris@19 171 /*
Chris@19 172 * This function contains 59 FP additions, 30 FP multiplications,
Chris@19 173 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
Chris@19 174 * 28 stack variables, 2 constants, and 24 memory accesses
Chris@19 175 */
Chris@19 176 #include "t1b.h"
Chris@19 177
Chris@19 178 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@19 179 {
Chris@19 180 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 181 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 182 {
Chris@19 183 INT m;
Chris@19 184 R *x;
Chris@19 185 x = ii;
Chris@19 186 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
Chris@19 187 V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty;
Chris@19 188 V Tz;
Chris@19 189 {
Chris@19 190 V T5, T3, T4, T2;
Chris@19 191 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 192 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@19 193 T5 = BYTW(&(W[TWVL * 14]), T4);
Chris@19 194 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@19 195 T3 = BYTW(&(W[TWVL * 6]), T2);
Chris@19 196 Tt = VSUB(T3, T5);
Chris@19 197 T6 = VADD(T3, T5);
Chris@19 198 T7 = VFNMS(LDK(KP500000000), T6, T1);
Chris@19 199 }
Chris@19 200 {
Chris@19 201 V Tn, Tp, Tm, TA, To;
Chris@19 202 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 203 Tn = BYTW(&(W[0]), Tm);
Chris@19 204 TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@19 205 TB = BYTW(&(W[TWVL * 16]), TA);
Chris@19 206 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@19 207 Tp = BYTW(&(W[TWVL * 8]), To);
Chris@19 208 Tq = VSUB(Tn, Tp);
Chris@19 209 TC = VADD(Tn, Tp);
Chris@19 210 TD = VFNMS(LDK(KP500000000), TC, TB);
Chris@19 211 }
Chris@19 212 {
Chris@19 213 V Td, Tb, T8, Tc, Ta;
Chris@19 214 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@19 215 T9 = BYTW(&(W[TWVL * 10]), T8);
Chris@19 216 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 217 Td = BYTW(&(W[TWVL * 2]), Tc);
Chris@19 218 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@19 219 Tb = BYTW(&(W[TWVL * 18]), Ta);
Chris@19 220 Tu = VSUB(Tb, Td);
Chris@19 221 Te = VADD(Tb, Td);
Chris@19 222 Tf = VFNMS(LDK(KP500000000), Te, T9);
Chris@19 223 }
Chris@19 224 {
Chris@19 225 V Ti, Tk, Th, Tw, Tj;
Chris@19 226 Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@19 227 Ti = BYTW(&(W[TWVL * 12]), Th);
Chris@19 228 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 229 Tx = BYTW(&(W[TWVL * 4]), Tw);
Chris@19 230 Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@19 231 Tk = BYTW(&(W[TWVL * 20]), Tj);
Chris@19 232 Tl = VSUB(Ti, Tk);
Chris@19 233 Ty = VADD(Ti, Tk);
Chris@19 234 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
Chris@19 235 }
Chris@19 236 {
Chris@19 237 V Ts, TG, TF, TH;
Chris@19 238 {
Chris@19 239 V Tg, Tr, Tv, TE;
Chris@19 240 Tg = VSUB(T7, Tf);
Chris@19 241 Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq));
Chris@19 242 Ts = VSUB(Tg, Tr);
Chris@19 243 TG = VADD(Tg, Tr);
Chris@19 244 Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu));
Chris@19 245 TE = VSUB(Tz, TD);
Chris@19 246 TF = VBYI(VADD(Tv, TE));
Chris@19 247 TH = VBYI(VSUB(TE, Tv));
Chris@19 248 }
Chris@19 249 ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)]));
Chris@19 250 ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@19 251 ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)]));
Chris@19 252 ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@19 253 }
Chris@19 254 {
Chris@19 255 V TS, TW, TV, TX;
Chris@19 256 {
Chris@19 257 V TQ, TR, TT, TU;
Chris@19 258 TQ = VADD(T1, T6);
Chris@19 259 TR = VADD(T9, Te);
Chris@19 260 TS = VSUB(TQ, TR);
Chris@19 261 TW = VADD(TQ, TR);
Chris@19 262 TT = VADD(Tx, Ty);
Chris@19 263 TU = VADD(TB, TC);
Chris@19 264 TV = VBYI(VSUB(TT, TU));
Chris@19 265 TX = VADD(TT, TU);
Chris@19 266 }
Chris@19 267 ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)]));
Chris@19 268 ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
Chris@19 269 ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)]));
Chris@19 270 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
Chris@19 271 }
Chris@19 272 {
Chris@19 273 V TK, TO, TN, TP;
Chris@19 274 {
Chris@19 275 V TI, TJ, TL, TM;
Chris@19 276 TI = VADD(Tl, Tq);
Chris@19 277 TJ = VADD(Tt, Tu);
Chris@19 278 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
Chris@19 279 TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
Chris@19 280 TL = VADD(T7, Tf);
Chris@19 281 TM = VADD(Tz, TD);
Chris@19 282 TN = VSUB(TL, TM);
Chris@19 283 TP = VADD(TL, TM);
Chris@19 284 }
Chris@19 285 ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0]));
Chris@19 286 ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0]));
Chris@19 287 ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0]));
Chris@19 288 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
Chris@19 289 }
Chris@19 290 }
Chris@19 291 }
Chris@19 292 VLEAVE();
Chris@19 293 }
Chris@19 294
Chris@19 295 static const tw_instr twinstr[] = {
Chris@19 296 VTW(0, 1),
Chris@19 297 VTW(0, 2),
Chris@19 298 VTW(0, 3),
Chris@19 299 VTW(0, 4),
Chris@19 300 VTW(0, 5),
Chris@19 301 VTW(0, 6),
Chris@19 302 VTW(0, 7),
Chris@19 303 VTW(0, 8),
Chris@19 304 VTW(0, 9),
Chris@19 305 VTW(0, 10),
Chris@19 306 VTW(0, 11),
Chris@19 307 {TW_NEXT, VL, 0}
Chris@19 308 };
Chris@19 309
Chris@19 310 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
Chris@19 311
Chris@19 312 void XSIMD(codelet_t1bv_12) (planner *p) {
Chris@19 313 X(kdft_dit_register) (p, t1bv_12, &desc);
Chris@19 314 }
Chris@19 315 #endif /* HAVE_FMA */