annotate fft/fftw/fftw-3.3.4/dft/simd/common/q1fv_4.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:47:56 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include q1f.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 44 FP additions, 32 FP multiplications,
Chris@19 32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
Chris@19 33 * 38 stack variables, 0 constants, and 32 memory accesses
Chris@19 34 */
Chris@19 35 #include "q1f.h"
Chris@19 36
Chris@19 37 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
Chris@19 38 {
Chris@19 39 {
Chris@19 40 INT m;
Chris@19 41 R *x;
Chris@19 42 x = ri;
Chris@19 43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
Chris@19 44 V Tb, Tm, Tx, TI;
Chris@19 45 {
Chris@19 46 V Tc, T9, T3, TG, TA, TH, TD, Ta, T6, Td, Tn, To, Tq, Tr, Tf;
Chris@19 47 V Tg;
Chris@19 48 {
Chris@19 49 V T1, T2, Ty, Tz, TB, TC, T4, T5;
Chris@19 50 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 51 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Chris@19 53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
Chris@19 54 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 55 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 56 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 57 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 58 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Chris@19 59 T9 = VADD(T1, T2);
Chris@19 60 T3 = VSUB(T1, T2);
Chris@19 61 TG = VADD(Ty, Tz);
Chris@19 62 TA = VSUB(Ty, Tz);
Chris@19 63 TH = VADD(TB, TC);
Chris@19 64 TD = VSUB(TB, TC);
Chris@19 65 Ta = VADD(T4, T5);
Chris@19 66 T6 = VSUB(T4, T5);
Chris@19 67 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Chris@19 68 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@19 69 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@19 70 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 71 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 72 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 73 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 74 }
Chris@19 75 {
Chris@19 76 V Tk, Te, Tv, Tp, Tw, Ts, Tl, Th, T7, TE, Tu, TF;
Chris@19 77 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
Chris@19 78 Tk = VADD(Tc, Td);
Chris@19 79 Te = VSUB(Tc, Td);
Chris@19 80 Tv = VADD(Tn, To);
Chris@19 81 Tp = VSUB(Tn, To);
Chris@19 82 Tw = VADD(Tq, Tr);
Chris@19 83 Ts = VSUB(Tq, Tr);
Chris@19 84 Tl = VADD(Tf, Tg);
Chris@19 85 Th = VSUB(Tf, Tg);
Chris@19 86 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@19 87 T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3));
Chris@19 88 TE = BYTWJ(&(W[0]), VFNMSI(TD, TA));
Chris@19 89 {
Chris@19 90 V Tt, Ti, Tj, T8;
Chris@19 91 T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3));
Chris@19 92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
Chris@19 93 Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp));
Chris@19 94 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
Chris@19 95 Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te));
Chris@19 96 Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te));
Chris@19 97 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
Chris@19 98 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 99 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
Chris@19 100 Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp));
Chris@19 101 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
Chris@19 102 TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA));
Chris@19 103 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 104 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 105 }
Chris@19 106 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
Chris@19 107 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
Chris@19 108 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
Chris@19 109 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
Chris@19 110 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
Chris@19 111 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 112 }
Chris@19 113 }
Chris@19 114 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Chris@19 115 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 116 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
Chris@19 117 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 118 }
Chris@19 119 }
Chris@19 120 VLEAVE();
Chris@19 121 }
Chris@19 122
Chris@19 123 static const tw_instr twinstr[] = {
Chris@19 124 VTW(0, 1),
Chris@19 125 VTW(0, 2),
Chris@19 126 VTW(0, 3),
Chris@19 127 {TW_NEXT, VL, 0}
Chris@19 128 };
Chris@19 129
Chris@19 130 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 };
Chris@19 131
Chris@19 132 void XSIMD(codelet_q1fv_4) (planner *p) {
Chris@19 133 X(kdft_difsq_register) (p, q1fv_4, &desc);
Chris@19 134 }
Chris@19 135 #else /* HAVE_FMA */
Chris@19 136
Chris@19 137 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include q1f.h */
Chris@19 138
Chris@19 139 /*
Chris@19 140 * This function contains 44 FP additions, 24 FP multiplications,
Chris@19 141 * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
Chris@19 142 * 22 stack variables, 0 constants, and 32 memory accesses
Chris@19 143 */
Chris@19 144 #include "q1f.h"
Chris@19 145
Chris@19 146 static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
Chris@19 147 {
Chris@19 148 {
Chris@19 149 INT m;
Chris@19 150 R *x;
Chris@19 151 x = ri;
Chris@19 152 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
Chris@19 153 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
Chris@19 154 V Tl;
Chris@19 155 {
Chris@19 156 V T1, T2, Ty, Tz;
Chris@19 157 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@19 158 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@19 159 T3 = VSUB(T1, T2);
Chris@19 160 T9 = VADD(T1, T2);
Chris@19 161 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Chris@19 162 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
Chris@19 163 TA = VSUB(Ty, Tz);
Chris@19 164 TG = VADD(Ty, Tz);
Chris@19 165 }
Chris@19 166 {
Chris@19 167 V TB, TC, T4, T5;
Chris@19 168 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 169 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 170 TD = VBYI(VSUB(TB, TC));
Chris@19 171 TH = VADD(TB, TC);
Chris@19 172 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@19 173 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@19 174 T6 = VBYI(VSUB(T4, T5));
Chris@19 175 Ta = VADD(T4, T5);
Chris@19 176 }
Chris@19 177 {
Chris@19 178 V Tc, Td, Tn, To;
Chris@19 179 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Chris@19 180 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Chris@19 181 Te = VSUB(Tc, Td);
Chris@19 182 Tk = VADD(Tc, Td);
Chris@19 183 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@19 184 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@19 185 Tp = VSUB(Tn, To);
Chris@19 186 Tv = VADD(Tn, To);
Chris@19 187 }
Chris@19 188 {
Chris@19 189 V Tq, Tr, Tf, Tg;
Chris@19 190 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 191 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 192 Ts = VBYI(VSUB(Tq, Tr));
Chris@19 193 Tw = VADD(Tq, Tr);
Chris@19 194 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 195 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 196 Th = VBYI(VSUB(Tf, Tg));
Chris@19 197 Tl = VADD(Tf, Tg);
Chris@19 198 }
Chris@19 199 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
Chris@19 200 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
Chris@19 201 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
Chris@19 202 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@19 203 {
Chris@19 204 V T7, Ti, Tt, TE;
Chris@19 205 T7 = BYTWJ(&(W[0]), VSUB(T3, T6));
Chris@19 206 ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)]));
Chris@19 207 Ti = BYTWJ(&(W[0]), VSUB(Te, Th));
Chris@19 208 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 209 Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts));
Chris@19 210 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)]));
Chris@19 211 TE = BYTWJ(&(W[0]), VSUB(TA, TD));
Chris@19 212 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@19 213 }
Chris@19 214 {
Chris@19 215 V T8, Tj, Tu, TF;
Chris@19 216 T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6));
Chris@19 217 ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)]));
Chris@19 218 Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th));
Chris@19 219 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 220 Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts));
Chris@19 221 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)]));
Chris@19 222 TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD));
Chris@19 223 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@19 224 }
Chris@19 225 {
Chris@19 226 V Tb, Tm, Tx, TI;
Chris@19 227 Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta));
Chris@19 228 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Chris@19 229 Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl));
Chris@19 230 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 231 Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw));
Chris@19 232 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
Chris@19 233 TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH));
Chris@19 234 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@19 235 }
Chris@19 236 }
Chris@19 237 }
Chris@19 238 VLEAVE();
Chris@19 239 }
Chris@19 240
Chris@19 241 static const tw_instr twinstr[] = {
Chris@19 242 VTW(0, 1),
Chris@19 243 VTW(0, 2),
Chris@19 244 VTW(0, 3),
Chris@19 245 {TW_NEXT, VL, 0}
Chris@19 246 };
Chris@19 247
Chris@19 248 static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 };
Chris@19 249
Chris@19 250 void XSIMD(codelet_q1fv_4) (planner *p) {
Chris@19 251 X(kdft_difsq_register) (p, q1fv_4, &desc);
Chris@19 252 }
Chris@19 253 #endif /* HAVE_FMA */