annotate fft/fftw/fftw-3.3.4/dft/simd/common/n2fv_6.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:54 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 18 FP additions, 8 FP multiplications,
Chris@19 32 * (or, 12 additions, 2 multiplications, 6 fused multiply/add),
Chris@19 33 * 29 stack variables, 2 constants, and 15 memory accesses
Chris@19 34 */
Chris@19 35 #include "n2f.h"
Chris@19 36
Chris@19 37 static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 41 {
Chris@19 42 INT i;
Chris@19 43 const R *xi;
Chris@19 44 R *xo;
Chris@19 45 xi = ri;
Chris@19 46 xo = ro;
Chris@19 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@19 48 V T1, T2, T4, T5, T7, T8;
Chris@19 49 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 50 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 51 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 52 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 53 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 54 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 55 {
Chris@19 56 V T3, Td, T6, Te, T9, Tf;
Chris@19 57 T3 = VSUB(T1, T2);
Chris@19 58 Td = VADD(T1, T2);
Chris@19 59 T6 = VSUB(T4, T5);
Chris@19 60 Te = VADD(T4, T5);
Chris@19 61 T9 = VSUB(T7, T8);
Chris@19 62 Tf = VADD(T7, T8);
Chris@19 63 {
Chris@19 64 V Tg, Ti, Ta, Tc;
Chris@19 65 Tg = VADD(Te, Tf);
Chris@19 66 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te));
Chris@19 67 Ta = VADD(T6, T9);
Chris@19 68 Tc = VMUL(LDK(KP866025403), VSUB(T9, T6));
Chris@19 69 {
Chris@19 70 V Th, Tj, Tb, Tk;
Chris@19 71 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@19 72 Tj = VADD(Td, Tg);
Chris@19 73 STM2(&(xo[0]), Tj, ovs, &(xo[0]));
Chris@19 74 Tb = VFNMS(LDK(KP500000000), Ta, T3);
Chris@19 75 Tk = VADD(T3, Ta);
Chris@19 76 STM2(&(xo[6]), Tk, ovs, &(xo[2]));
Chris@19 77 {
Chris@19 78 V Tl, Tm, Tn, To;
Chris@19 79 Tl = VFMAI(Ti, Th);
Chris@19 80 STM2(&(xo[8]), Tl, ovs, &(xo[0]));
Chris@19 81 Tm = VFNMSI(Ti, Th);
Chris@19 82 STM2(&(xo[4]), Tm, ovs, &(xo[0]));
Chris@19 83 STN2(&(xo[4]), Tm, Tk, ovs);
Chris@19 84 Tn = VFMAI(Tc, Tb);
Chris@19 85 STM2(&(xo[2]), Tn, ovs, &(xo[2]));
Chris@19 86 STN2(&(xo[0]), Tj, Tn, ovs);
Chris@19 87 To = VFNMSI(Tc, Tb);
Chris@19 88 STM2(&(xo[10]), To, ovs, &(xo[2]));
Chris@19 89 STN2(&(xo[8]), Tl, To, ovs);
Chris@19 90 }
Chris@19 91 }
Chris@19 92 }
Chris@19 93 }
Chris@19 94 }
Chris@19 95 }
Chris@19 96 VLEAVE();
Chris@19 97 }
Chris@19 98
Chris@19 99 static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), {12, 2, 6, 0}, &GENUS, 0, 2, 0, 0 };
Chris@19 100
Chris@19 101 void XSIMD(codelet_n2fv_6) (planner *p) {
Chris@19 102 X(kdft_register) (p, n2fv_6, &desc);
Chris@19 103 }
Chris@19 104
Chris@19 105 #else /* HAVE_FMA */
Chris@19 106
Chris@19 107 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@19 108
Chris@19 109 /*
Chris@19 110 * This function contains 18 FP additions, 4 FP multiplications,
Chris@19 111 * (or, 16 additions, 2 multiplications, 2 fused multiply/add),
Chris@19 112 * 25 stack variables, 2 constants, and 15 memory accesses
Chris@19 113 */
Chris@19 114 #include "n2f.h"
Chris@19 115
Chris@19 116 static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 117 {
Chris@19 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 119 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 120 {
Chris@19 121 INT i;
Chris@19 122 const R *xi;
Chris@19 123 R *xo;
Chris@19 124 xi = ri;
Chris@19 125 xo = ro;
Chris@19 126 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@19 127 V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk;
Chris@19 128 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 129 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 130 T3 = VSUB(T1, T2);
Chris@19 131 Td = VADD(T1, T2);
Chris@19 132 {
Chris@19 133 V T4, T5, T7, T8;
Chris@19 134 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 135 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 136 T6 = VSUB(T4, T5);
Chris@19 137 Te = VADD(T4, T5);
Chris@19 138 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 139 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 140 T9 = VSUB(T7, T8);
Chris@19 141 Tf = VADD(T7, T8);
Chris@19 142 }
Chris@19 143 Ta = VADD(T6, T9);
Chris@19 144 Tg = VADD(Te, Tf);
Chris@19 145 Tj = VADD(T3, Ta);
Chris@19 146 STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Chris@19 147 Tk = VADD(Td, Tg);
Chris@19 148 STM2(&(xo[0]), Tk, ovs, &(xo[0]));
Chris@19 149 {
Chris@19 150 V Tl, Tb, Tc, Tm;
Chris@19 151 Tb = VFNMS(LDK(KP500000000), Ta, T3);
Chris@19 152 Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6)));
Chris@19 153 Tl = VSUB(Tb, Tc);
Chris@19 154 STM2(&(xo[10]), Tl, ovs, &(xo[2]));
Chris@19 155 Tm = VADD(Tb, Tc);
Chris@19 156 STM2(&(xo[2]), Tm, ovs, &(xo[2]));
Chris@19 157 STN2(&(xo[0]), Tk, Tm, ovs);
Chris@19 158 {
Chris@19 159 V Th, Ti, Tn, To;
Chris@19 160 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@19 161 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te)));
Chris@19 162 Tn = VSUB(Th, Ti);
Chris@19 163 STM2(&(xo[4]), Tn, ovs, &(xo[0]));
Chris@19 164 STN2(&(xo[4]), Tn, Tj, ovs);
Chris@19 165 To = VADD(Th, Ti);
Chris@19 166 STM2(&(xo[8]), To, ovs, &(xo[0]));
Chris@19 167 STN2(&(xo[8]), To, Tl, ovs);
Chris@19 168 }
Chris@19 169 }
Chris@19 170 }
Chris@19 171 }
Chris@19 172 VLEAVE();
Chris@19 173 }
Chris@19 174
Chris@19 175 static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), {16, 2, 2, 0}, &GENUS, 0, 2, 0, 0 };
Chris@19 176
Chris@19 177 void XSIMD(codelet_n2fv_6) (planner *p) {
Chris@19 178 X(kdft_register) (p, n2fv_6, &desc);
Chris@19 179 }
Chris@19 180
Chris@19 181 #endif /* HAVE_FMA */