annotate fft/fftw/fftw-3.3.4/dft/simd/common/n2bv_12.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:59 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@19 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@19 33 * 61 stack variables, 2 constants, and 30 memory accesses
Chris@19 34 */
Chris@19 35 #include "n2b.h"
Chris@19 36
Chris@19 37 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT i;
Chris@19 43 const R *xi;
Chris@19 44 R *xo;
Chris@19 45 xi = ii;
Chris@19 46 xo = io;
Chris@19 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
Chris@19 49 {
Chris@19 50 V T2, T3, T7, T8;
Chris@19 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 62 Tz = VSUB(T2, T3);
Chris@19 63 T4 = VADD(T2, T3);
Chris@19 64 TA = VSUB(T7, T8);
Chris@19 65 T9 = VADD(T7, T8);
Chris@19 66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 67 }
Chris@19 68 Tf = VADD(Td, Te);
Chris@19 69 Tw = VSUB(Td, Te);
Chris@19 70 {
Chris@19 71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
Chris@19 72 T5 = VADD(T1, T4);
Chris@19 73 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 74 TJ = VSUB(Tz, TA);
Chris@19 75 TB = VADD(Tz, TA);
Chris@19 76 Ta = VADD(T6, T9);
Chris@19 77 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 78 Tk = VADD(Ti, Tj);
Chris@19 79 Tx = VSUB(Tj, Ti);
Chris@19 80 Tg = VADD(Tc, Tf);
Chris@19 81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@19 82 {
Chris@19 83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
Chris@19 84 Tr = VADD(Tp, Tq);
Chris@19 85 TF = VSUB(Tp, Tq);
Chris@19 86 Tb = VSUB(T5, Ta);
Chris@19 87 Tn = VADD(T5, Ta);
Chris@19 88 TG = VADD(Tw, Tx);
Chris@19 89 Ty = VSUB(Tw, Tx);
Chris@19 90 Tl = VADD(Th, Tk);
Chris@19 91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
Chris@19 92 {
Chris@19 93 V TC, TE, TH, TL, Tu, TI, Tm, To;
Chris@19 94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
Chris@19 95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
Chris@19 96 TH = VFNMS(LDK(KP866025403), TG, TF);
Chris@19 97 TL = VFMA(LDK(KP866025403), TG, TF);
Chris@19 98 Tu = VADD(Ts, Tt);
Chris@19 99 TI = VSUB(Ts, Tt);
Chris@19 100 Tm = VSUB(Tg, Tl);
Chris@19 101 To = VADD(Tg, Tl);
Chris@19 102 {
Chris@19 103 V TK, TM, Tv, TD;
Chris@19 104 TK = VFMA(LDK(KP866025403), TJ, TI);
Chris@19 105 TM = VFNMS(LDK(KP866025403), TJ, TI);
Chris@19 106 Tv = VSUB(Tr, Tu);
Chris@19 107 TD = VADD(Tr, Tu);
Chris@19 108 {
Chris@19 109 V TN, TO, TP, TQ;
Chris@19 110 TN = VADD(Tn, To);
Chris@19 111 STM2(&(xo[0]), TN, ovs, &(xo[0]));
Chris@19 112 TO = VSUB(Tn, To);
Chris@19 113 STM2(&(xo[12]), TO, ovs, &(xo[0]));
Chris@19 114 TP = VFMAI(Tm, Tb);
Chris@19 115 STM2(&(xo[18]), TP, ovs, &(xo[2]));
Chris@19 116 TQ = VFNMSI(Tm, Tb);
Chris@19 117 STM2(&(xo[6]), TQ, ovs, &(xo[2]));
Chris@19 118 {
Chris@19 119 V TR, TS, TT, TU;
Chris@19 120 TR = VFMAI(TM, TL);
Chris@19 121 STM2(&(xo[10]), TR, ovs, &(xo[2]));
Chris@19 122 TS = VFNMSI(TM, TL);
Chris@19 123 STM2(&(xo[14]), TS, ovs, &(xo[2]));
Chris@19 124 STN2(&(xo[12]), TO, TS, ovs);
Chris@19 125 TT = VFNMSI(TK, TH);
Chris@19 126 STM2(&(xo[22]), TT, ovs, &(xo[2]));
Chris@19 127 TU = VFMAI(TK, TH);
Chris@19 128 STM2(&(xo[2]), TU, ovs, &(xo[2]));
Chris@19 129 STN2(&(xo[0]), TN, TU, ovs);
Chris@19 130 {
Chris@19 131 V TV, TW, TX, TY;
Chris@19 132 TV = VFNMSI(TE, TD);
Chris@19 133 STM2(&(xo[16]), TV, ovs, &(xo[0]));
Chris@19 134 STN2(&(xo[16]), TV, TP, ovs);
Chris@19 135 TW = VFMAI(TE, TD);
Chris@19 136 STM2(&(xo[8]), TW, ovs, &(xo[0]));
Chris@19 137 STN2(&(xo[8]), TW, TR, ovs);
Chris@19 138 TX = VFMAI(TC, Tv);
Chris@19 139 STM2(&(xo[4]), TX, ovs, &(xo[0]));
Chris@19 140 STN2(&(xo[4]), TX, TQ, ovs);
Chris@19 141 TY = VFNMSI(TC, Tv);
Chris@19 142 STM2(&(xo[20]), TY, ovs, &(xo[0]));
Chris@19 143 STN2(&(xo[20]), TY, TT, ovs);
Chris@19 144 }
Chris@19 145 }
Chris@19 146 }
Chris@19 147 }
Chris@19 148 }
Chris@19 149 }
Chris@19 150 }
Chris@19 151 }
Chris@19 152 }
Chris@19 153 VLEAVE();
Chris@19 154 }
Chris@19 155
Chris@19 156 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
Chris@19 157
Chris@19 158 void XSIMD(codelet_n2bv_12) (planner *p) {
Chris@19 159 X(kdft_register) (p, n2bv_12, &desc);
Chris@19 160 }
Chris@19 161
Chris@19 162 #else /* HAVE_FMA */
Chris@19 163
Chris@19 164 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
Chris@19 165
Chris@19 166 /*
Chris@19 167 * This function contains 48 FP additions, 8 FP multiplications,
Chris@19 168 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@19 169 * 33 stack variables, 2 constants, and 30 memory accesses
Chris@19 170 */
Chris@19 171 #include "n2b.h"
Chris@19 172
Chris@19 173 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 174 {
Chris@19 175 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 177 {
Chris@19 178 INT i;
Chris@19 179 const R *xi;
Chris@19 180 R *xo;
Chris@19 181 xi = ii;
Chris@19 182 xo = io;
Chris@19 183 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 184 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
Chris@19 185 {
Chris@19 186 V T1, T6, T4, Tk, T9, Tl;
Chris@19 187 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 188 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 189 {
Chris@19 190 V T2, T3, T7, T8;
Chris@19 191 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 192 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 193 T4 = VADD(T2, T3);
Chris@19 194 Tk = VSUB(T2, T3);
Chris@19 195 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 196 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 197 T9 = VADD(T7, T8);
Chris@19 198 Tl = VSUB(T7, T8);
Chris@19 199 }
Chris@19 200 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 201 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 202 TG = VADD(T6, T9);
Chris@19 203 TF = VADD(T1, T4);
Chris@19 204 Ty = VADD(Tk, Tl);
Chris@19 205 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
Chris@19 206 }
Chris@19 207 {
Chris@19 208 V Tn, Tq, Te, To, Th, Tr;
Chris@19 209 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 210 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 211 {
Chris@19 212 V Tc, Td, Tf, Tg;
Chris@19 213 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 214 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 215 Te = VSUB(Tc, Td);
Chris@19 216 To = VADD(Tc, Td);
Chris@19 217 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 218 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 219 Th = VSUB(Tf, Tg);
Chris@19 220 Tr = VADD(Tf, Tg);
Chris@19 221 }
Chris@19 222 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
Chris@19 223 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@19 224 TJ = VADD(Tq, Tr);
Chris@19 225 TI = VADD(Tn, To);
Chris@19 226 Tx = VADD(Te, Th);
Chris@19 227 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
Chris@19 228 }
Chris@19 229 {
Chris@19 230 V TN, TO, TP, TQ, TR, TS;
Chris@19 231 {
Chris@19 232 V TH, TK, TL, TM;
Chris@19 233 TH = VSUB(TF, TG);
Chris@19 234 TK = VBYI(VSUB(TI, TJ));
Chris@19 235 TN = VSUB(TH, TK);
Chris@19 236 STM2(&(xo[6]), TN, ovs, &(xo[2]));
Chris@19 237 TO = VADD(TH, TK);
Chris@19 238 STM2(&(xo[18]), TO, ovs, &(xo[2]));
Chris@19 239 TL = VADD(TF, TG);
Chris@19 240 TM = VADD(TI, TJ);
Chris@19 241 TP = VSUB(TL, TM);
Chris@19 242 STM2(&(xo[12]), TP, ovs, &(xo[0]));
Chris@19 243 TQ = VADD(TL, TM);
Chris@19 244 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
Chris@19 245 }
Chris@19 246 {
Chris@19 247 V Tj, Tv, Tu, Tw, Tb, Tt, TT, TU;
Chris@19 248 Tb = VSUB(T5, Ta);
Chris@19 249 Tj = VSUB(Tb, Ti);
Chris@19 250 Tv = VADD(Tb, Ti);
Chris@19 251 Tt = VSUB(Tp, Ts);
Chris@19 252 Tu = VBYI(VADD(Tm, Tt));
Chris@19 253 Tw = VBYI(VSUB(Tt, Tm));
Chris@19 254 TR = VSUB(Tj, Tu);
Chris@19 255 STM2(&(xo[22]), TR, ovs, &(xo[2]));
Chris@19 256 TS = VADD(Tv, Tw);
Chris@19 257 STM2(&(xo[10]), TS, ovs, &(xo[2]));
Chris@19 258 TT = VADD(Tj, Tu);
Chris@19 259 STM2(&(xo[2]), TT, ovs, &(xo[2]));
Chris@19 260 STN2(&(xo[0]), TQ, TT, ovs);
Chris@19 261 TU = VSUB(Tv, Tw);
Chris@19 262 STM2(&(xo[14]), TU, ovs, &(xo[2]));
Chris@19 263 STN2(&(xo[12]), TP, TU, ovs);
Chris@19 264 }
Chris@19 265 {
Chris@19 266 V Tz, TD, TC, TE, TA, TB;
Chris@19 267 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
Chris@19 268 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
Chris@19 269 TA = VADD(T5, Ta);
Chris@19 270 TB = VADD(Tp, Ts);
Chris@19 271 TC = VSUB(TA, TB);
Chris@19 272 TE = VADD(TA, TB);
Chris@19 273 {
Chris@19 274 V TV, TW, TX, TY;
Chris@19 275 TV = VADD(Tz, TC);
Chris@19 276 STM2(&(xo[4]), TV, ovs, &(xo[0]));
Chris@19 277 STN2(&(xo[4]), TV, TN, ovs);
Chris@19 278 TW = VSUB(TE, TD);
Chris@19 279 STM2(&(xo[16]), TW, ovs, &(xo[0]));
Chris@19 280 STN2(&(xo[16]), TW, TO, ovs);
Chris@19 281 TX = VSUB(TC, Tz);
Chris@19 282 STM2(&(xo[20]), TX, ovs, &(xo[0]));
Chris@19 283 STN2(&(xo[20]), TX, TR, ovs);
Chris@19 284 TY = VADD(TD, TE);
Chris@19 285 STM2(&(xo[8]), TY, ovs, &(xo[0]));
Chris@19 286 STN2(&(xo[8]), TY, TS, ovs);
Chris@19 287 }
Chris@19 288 }
Chris@19 289 }
Chris@19 290 }
Chris@19 291 }
Chris@19 292 VLEAVE();
Chris@19 293 }
Chris@19 294
Chris@19 295 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
Chris@19 296
Chris@19 297 void XSIMD(codelet_n2bv_12) (planner *p) {
Chris@19 298 X(kdft_register) (p, n2bv_12, &desc);
Chris@19 299 }
Chris@19 300
Chris@19 301 #endif /* HAVE_FMA */