annotate fft/fftw/fftw-3.3.4/dft/simd/common/n1fv_12.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:49 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@19 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@19 33 * 49 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "n1f.h"
Chris@19 36
Chris@19 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT i;
Chris@19 43 const R *xi;
Chris@19 44 R *xo;
Chris@19 45 xi = ri;
Chris@19 46 xo = ro;
Chris@19 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
Chris@19 49 {
Chris@19 50 V T2, T3, T7, T8;
Chris@19 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 62 Tr = VSUB(T3, T2);
Chris@19 63 T4 = VADD(T2, T3);
Chris@19 64 Ts = VSUB(T8, T7);
Chris@19 65 T9 = VADD(T7, T8);
Chris@19 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 67 }
Chris@19 68 Te = VSUB(Tc, Td);
Chris@19 69 Tl = VADD(Td, Tc);
Chris@19 70 {
Chris@19 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
Chris@19 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 73 TF = VADD(T1, T4);
Chris@19 74 TB = VADD(Tr, Ts);
Chris@19 75 Tt = VSUB(Tr, Ts);
Chris@19 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 77 TG = VADD(T6, T9);
Chris@19 78 Th = VSUB(Tf, Tg);
Chris@19 79 To = VADD(Tf, Tg);
Chris@19 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
Chris@19 81 TI = VADD(Tk, Tl);
Chris@19 82 {
Chris@19 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
Chris@19 84 TH = VSUB(TF, TG);
Chris@19 85 TL = VADD(TF, TG);
Chris@19 86 Tb = VSUB(T5, Ta);
Chris@19 87 Tx = VADD(T5, Ta);
Chris@19 88 TJ = VADD(Tn, To);
Chris@19 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@19 90 Ti = VADD(Te, Th);
Chris@19 91 TA = VSUB(Te, Th);
Chris@19 92 {
Chris@19 93 V Tq, Ty, TK, TM;
Chris@19 94 Tq = VSUB(Tm, Tp);
Chris@19 95 Ty = VADD(Tm, Tp);
Chris@19 96 TK = VSUB(TI, TJ);
Chris@19 97 TM = VADD(TI, TJ);
Chris@19 98 {
Chris@19 99 V TC, TE, Tj, Tv;
Chris@19 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
Chris@19 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
Chris@19 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
Chris@19 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
Chris@19 104 {
Chris@19 105 V Tz, TD, Tu, Tw;
Chris@19 106 Tz = VSUB(Tx, Ty);
Chris@19 107 TD = VADD(Tx, Ty);
Chris@19 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
Chris@19 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
Chris@19 110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
Chris@19 111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@19 112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@19 113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@19 114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
Chris@19 115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@19 116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
Chris@19 117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
Chris@19 118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@19 119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@19 120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@19 121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@19 122 }
Chris@19 123 }
Chris@19 124 }
Chris@19 125 }
Chris@19 126 }
Chris@19 127 }
Chris@19 128 }
Chris@19 129 VLEAVE();
Chris@19 130 }
Chris@19 131
Chris@19 132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 133
Chris@19 134 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@19 135 X(kdft_register) (p, n1fv_12, &desc);
Chris@19 136 }
Chris@19 137
Chris@19 138 #else /* HAVE_FMA */
Chris@19 139
Chris@19 140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@19 141
Chris@19 142 /*
Chris@19 143 * This function contains 48 FP additions, 8 FP multiplications,
Chris@19 144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@19 145 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@19 146 */
Chris@19 147 #include "n1f.h"
Chris@19 148
Chris@19 149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 150 {
Chris@19 151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 153 {
Chris@19 154 INT i;
Chris@19 155 const R *xi;
Chris@19 156 R *xo;
Chris@19 157 xi = ri;
Chris@19 158 xo = ro;
Chris@19 159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
Chris@19 161 {
Chris@19 162 V T1, T6, T4, Tw, T9, Tx;
Chris@19 163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 165 {
Chris@19 166 V T2, T3, T7, T8;
Chris@19 167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 169 T4 = VADD(T2, T3);
Chris@19 170 Tw = VSUB(T3, T2);
Chris@19 171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 173 T9 = VADD(T7, T8);
Chris@19 174 Tx = VSUB(T8, T7);
Chris@19 175 }
Chris@19 176 T5 = VADD(T1, T4);
Chris@19 177 Ta = VADD(T6, T9);
Chris@19 178 TJ = VADD(Tw, Tx);
Chris@19 179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
Chris@19 180 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 181 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 182 }
Chris@19 183 {
Chris@19 184 V Tc, Th, Tf, Ts, Tk, Tt;
Chris@19 185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 187 {
Chris@19 188 V Td, Te, Ti, Tj;
Chris@19 189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 191 Tf = VADD(Td, Te);
Chris@19 192 Ts = VSUB(Te, Td);
Chris@19 193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 195 Tk = VADD(Ti, Tj);
Chris@19 196 Tt = VSUB(Tj, Ti);
Chris@19 197 }
Chris@19 198 Tg = VADD(Tc, Tf);
Chris@19 199 Tl = VADD(Th, Tk);
Chris@19 200 TI = VADD(Ts, Tt);
Chris@19 201 TA = VFNMS(LDK(KP500000000), Tk, Th);
Chris@19 202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@19 203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
Chris@19 204 }
Chris@19 205 {
Chris@19 206 V Tb, Tm, Tn, To;
Chris@19 207 Tb = VSUB(T5, Ta);
Chris@19 208 Tm = VBYI(VSUB(Tg, Tl));
Chris@19 209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@19 210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@19 211 Tn = VADD(T5, Ta);
Chris@19 212 To = VADD(Tg, Tl);
Chris@19 213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
Chris@19 214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
Chris@19 215 }
Chris@19 216 {
Chris@19 217 V Tv, TE, TC, TD, Tr, TB;
Chris@19 218 Tr = VSUB(Tp, Tq);
Chris@19 219 Tv = VSUB(Tr, Tu);
Chris@19 220 TE = VADD(Tr, Tu);
Chris@19 221 TB = VSUB(Tz, TA);
Chris@19 222 TC = VBYI(VADD(Ty, TB));
Chris@19 223 TD = VBYI(VSUB(Ty, TB));
Chris@19 224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
Chris@19 225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
Chris@19 226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
Chris@19 227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
Chris@19 228 }
Chris@19 229 {
Chris@19 230 V TK, TM, TH, TL, TF, TG;
Chris@19 231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
Chris@19 232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
Chris@19 233 TF = VADD(Tp, Tq);
Chris@19 234 TG = VADD(Tz, TA);
Chris@19 235 TH = VSUB(TF, TG);
Chris@19 236 TL = VADD(TF, TG);
Chris@19 237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
Chris@19 238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
Chris@19 239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
Chris@19 240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@19 241 }
Chris@19 242 }
Chris@19 243 }
Chris@19 244 VLEAVE();
Chris@19 245 }
Chris@19 246
Chris@19 247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 248
Chris@19 249 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@19 250 X(kdft_register) (p, n1fv_12, &desc);
Chris@19 251 }
Chris@19 252
Chris@19 253 #endif /* HAVE_FMA */