annotate fft/fftw/fftw-3.3.4/dft/simd/common/n1bv_9.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:51 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include n1b.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 46 FP additions, 38 FP multiplications,
Chris@19 32 * (or, 12 additions, 4 multiplications, 34 fused multiply/add),
Chris@19 33 * 68 stack variables, 19 constants, and 18 memory accesses
Chris@19 34 */
Chris@19 35 #include "n1b.h"
Chris@19 36
Chris@19 37 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@19 40 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
Chris@19 41 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@19 42 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
Chris@19 43 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
Chris@19 44 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@19 45 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
Chris@19 46 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
Chris@19 47 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
Chris@19 48 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
Chris@19 49 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
Chris@19 50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 51 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
Chris@19 52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
Chris@19 53 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
Chris@19 54 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
Chris@19 55 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
Chris@19 56 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
Chris@19 57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 58 {
Chris@19 59 INT i;
Chris@19 60 const R *xi;
Chris@19 61 R *xo;
Chris@19 62 xi = ii;
Chris@19 63 xo = io;
Chris@19 64 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
Chris@19 65 V T1, T2, T3, T6, Tf, T7, T8, Tb, Tc, Tp, T4;
Chris@19 66 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 67 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 68 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 69 T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 70 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 71 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 72 T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 73 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 74 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 75 Tp = VSUB(T2, T3);
Chris@19 76 T4 = VADD(T2, T3);
Chris@19 77 {
Chris@19 78 V Te, T9, Tg, Td, TF, T5;
Chris@19 79 Te = VSUB(T8, T7);
Chris@19 80 T9 = VADD(T7, T8);
Chris@19 81 Tg = VADD(Tb, Tc);
Chris@19 82 Td = VSUB(Tb, Tc);
Chris@19 83 TF = VADD(T1, T4);
Chris@19 84 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 85 {
Chris@19 86 V Ta, TH, Th, TG;
Chris@19 87 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 88 TH = VADD(T6, T9);
Chris@19 89 Th = VFNMS(LDK(KP500000000), Tg, Tf);
Chris@19 90 TG = VADD(Tf, Tg);
Chris@19 91 {
Chris@19 92 V Tr, Tu, Tm, Tv, Ts, Ti, TI, TK;
Chris@19 93 Tr = VFNMS(LDK(KP152703644), Te, Ta);
Chris@19 94 Tu = VFMA(LDK(KP203604859), Ta, Te);
Chris@19 95 Tm = VFNMS(LDK(KP439692620), Td, Ta);
Chris@19 96 Tv = VFNMS(LDK(KP726681596), Td, Th);
Chris@19 97 Ts = VFMA(LDK(KP968908795), Th, Td);
Chris@19 98 Ti = VFNMS(LDK(KP586256827), Th, Te);
Chris@19 99 TI = VADD(TG, TH);
Chris@19 100 TK = VMUL(LDK(KP866025403), VSUB(TG, TH));
Chris@19 101 {
Chris@19 102 V Tt, TA, Tw, Tz, Tj, TJ, To, TE, Tn;
Chris@19 103 Tn = VFNMS(LDK(KP420276625), Tm, Te);
Chris@19 104 Tt = VFNMS(LDK(KP673648177), Ts, Tr);
Chris@19 105 TA = VFMA(LDK(KP673648177), Ts, Tr);
Chris@19 106 Tw = VFMA(LDK(KP898197570), Tv, Tu);
Chris@19 107 Tz = VFNMS(LDK(KP898197570), Tv, Tu);
Chris@19 108 Tj = VFNMS(LDK(KP347296355), Ti, Td);
Chris@19 109 ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0]));
Chris@19 110 TJ = VFNMS(LDK(KP500000000), TI, TF);
Chris@19 111 To = VFNMS(LDK(KP826351822), Tn, Th);
Chris@19 112 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA));
Chris@19 113 {
Chris@19 114 V TB, TD, Tx, Tk, Tq, TC, Ty, Tl;
Chris@19 115 TB = VFMA(LDK(KP666666666), TA, Tz);
Chris@19 116 TD = VFMA(LDK(KP852868531), Tw, T5);
Chris@19 117 Tx = VFNMS(LDK(KP500000000), Tw, Tt);
Chris@19 118 Tk = VFNMS(LDK(KP907603734), Tj, Ta);
Chris@19 119 ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0]));
Chris@19 120 ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)]));
Chris@19 121 Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To));
Chris@19 122 TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp));
Chris@19 123 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@19 124 ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)]));
Chris@19 125 Ty = VFMA(LDK(KP852868531), Tx, T5);
Chris@19 126 Tl = VFNMS(LDK(KP939692620), Tk, T5);
Chris@19 127 ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)]));
Chris@19 128 ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0]));
Chris@19 129 ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0]));
Chris@19 130 ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)]));
Chris@19 131 }
Chris@19 132 }
Chris@19 133 }
Chris@19 134 }
Chris@19 135 }
Chris@19 136 }
Chris@19 137 }
Chris@19 138 VLEAVE();
Chris@19 139 }
Chris@19 140
Chris@19 141 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 142
Chris@19 143 void XSIMD(codelet_n1bv_9) (planner *p) {
Chris@19 144 X(kdft_register) (p, n1bv_9, &desc);
Chris@19 145 }
Chris@19 146
Chris@19 147 #else /* HAVE_FMA */
Chris@19 148
Chris@19 149 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include n1b.h */
Chris@19 150
Chris@19 151 /*
Chris@19 152 * This function contains 46 FP additions, 26 FP multiplications,
Chris@19 153 * (or, 30 additions, 10 multiplications, 16 fused multiply/add),
Chris@19 154 * 41 stack variables, 14 constants, and 18 memory accesses
Chris@19 155 */
Chris@19 156 #include "n1b.h"
Chris@19 157
Chris@19 158 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 159 {
Chris@19 160 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@19 161 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
Chris@19 162 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@19 163 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
Chris@19 164 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@19 165 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
Chris@19 166 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
Chris@19 167 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@19 168 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@19 169 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
Chris@19 170 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@19 171 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@19 172 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 173 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 174 {
Chris@19 175 INT i;
Chris@19 176 const R *xi;
Chris@19 177 R *xo;
Chris@19 178 xi = ii;
Chris@19 179 xo = io;
Chris@19 180 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
Chris@19 181 V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn;
Chris@19 182 {
Chris@19 183 V T1, T2, T3, T4;
Chris@19 184 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 185 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 186 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 187 T4 = VADD(T2, T3);
Chris@19 188 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 189 Ty = VADD(T1, T4);
Chris@19 190 Tm = VMUL(LDK(KP866025403), VSUB(T2, T3));
Chris@19 191 }
Chris@19 192 {
Chris@19 193 V Td, Tg, Te, Tf;
Chris@19 194 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 195 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 196 Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 197 Tg = VADD(Te, Tf);
Chris@19 198 Ti = VSUB(Te, Tf);
Chris@19 199 Tw = VADD(Td, Tg);
Chris@19 200 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@19 201 Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th));
Chris@19 202 To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th));
Chris@19 203 }
Chris@19 204 {
Chris@19 205 V T6, T9, T7, T8;
Chris@19 206 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 207 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 208 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 209 T9 = VADD(T7, T8);
Chris@19 210 Tb = VSUB(T7, T8);
Chris@19 211 Tv = VADD(T6, T9);
Chris@19 212 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 213 Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta));
Chris@19 214 Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta));
Chris@19 215 }
Chris@19 216 {
Chris@19 217 V Tx, Tz, TA, Tt, Tu;
Chris@19 218 Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw)));
Chris@19 219 Tz = VADD(Tv, Tw);
Chris@19 220 TA = VFNMS(LDK(KP500000000), Tz, Ty);
Chris@19 221 ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)]));
Chris@19 222 ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0]));
Chris@19 223 ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0]));
Chris@19 224 Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5))));
Chris@19 225 Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm));
Chris@19 226 ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)]));
Chris@19 227 ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0]));
Chris@19 228 {
Chris@19 229 V Tl, Ts, Tq, Tr, Tk, Tp;
Chris@19 230 Tk = VADD(Tc, Tj);
Chris@19 231 Tl = VADD(T5, Tk);
Chris@19 232 Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5));
Chris@19 233 Tp = VADD(Tn, To);
Chris@19 234 Tq = VBYI(VADD(Tm, Tp));
Chris@19 235 Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj)))));
Chris@19 236 ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0]));
Chris@19 237 ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)]));
Chris@19 238 ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)]));
Chris@19 239 ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0]));
Chris@19 240 }
Chris@19 241 }
Chris@19 242 }
Chris@19 243 }
Chris@19 244 VLEAVE();
Chris@19 245 }
Chris@19 246
Chris@19 247 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 248
Chris@19 249 void XSIMD(codelet_n1bv_9) (planner *p) {
Chris@19 250 X(kdft_register) (p, n1bv_9, &desc);
Chris@19 251 }
Chris@19 252
Chris@19 253 #endif /* HAVE_FMA */