annotate fft/fftw/fftw-3.3.4/dft/simd/common/n1bv_12.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:51 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@19 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@19 33 * 49 stack variables, 2 constants, and 24 memory accesses
Chris@19 34 */
Chris@19 35 #include "n1b.h"
Chris@19 36
Chris@19 37 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 41 {
Chris@19 42 INT i;
Chris@19 43 const R *xi;
Chris@19 44 R *xo;
Chris@19 45 xi = ii;
Chris@19 46 xo = io;
Chris@19 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
Chris@19 49 {
Chris@19 50 V T2, T3, T7, T8;
Chris@19 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 62 Tz = VSUB(T2, T3);
Chris@19 63 T4 = VADD(T2, T3);
Chris@19 64 TA = VSUB(T7, T8);
Chris@19 65 T9 = VADD(T7, T8);
Chris@19 66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 67 }
Chris@19 68 Tf = VADD(Td, Te);
Chris@19 69 Tw = VSUB(Td, Te);
Chris@19 70 {
Chris@19 71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
Chris@19 72 T5 = VADD(T1, T4);
Chris@19 73 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 74 TJ = VSUB(Tz, TA);
Chris@19 75 TB = VADD(Tz, TA);
Chris@19 76 Ta = VADD(T6, T9);
Chris@19 77 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 78 Tk = VADD(Ti, Tj);
Chris@19 79 Tx = VSUB(Tj, Ti);
Chris@19 80 Tg = VADD(Tc, Tf);
Chris@19 81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@19 82 {
Chris@19 83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
Chris@19 84 Tr = VADD(Tp, Tq);
Chris@19 85 TF = VSUB(Tp, Tq);
Chris@19 86 Tb = VSUB(T5, Ta);
Chris@19 87 Tn = VADD(T5, Ta);
Chris@19 88 TG = VADD(Tw, Tx);
Chris@19 89 Ty = VSUB(Tw, Tx);
Chris@19 90 Tl = VADD(Th, Tk);
Chris@19 91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
Chris@19 92 {
Chris@19 93 V TC, TE, TH, TL, Tu, TI, Tm, To;
Chris@19 94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
Chris@19 95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
Chris@19 96 TH = VFNMS(LDK(KP866025403), TG, TF);
Chris@19 97 TL = VFMA(LDK(KP866025403), TG, TF);
Chris@19 98 Tu = VADD(Ts, Tt);
Chris@19 99 TI = VSUB(Ts, Tt);
Chris@19 100 Tm = VSUB(Tg, Tl);
Chris@19 101 To = VADD(Tg, Tl);
Chris@19 102 {
Chris@19 103 V TK, TM, Tv, TD;
Chris@19 104 TK = VFMA(LDK(KP866025403), TJ, TI);
Chris@19 105 TM = VFNMS(LDK(KP866025403), TJ, TI);
Chris@19 106 Tv = VSUB(Tr, Tu);
Chris@19 107 TD = VADD(Tr, Tu);
Chris@19 108 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
Chris@19 109 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
Chris@19 110 ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
Chris@19 111 ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
Chris@19 112 ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
Chris@19 113 ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
Chris@19 114 ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@19 115 ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@19 116 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@19 117 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
Chris@19 118 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
Chris@19 119 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
Chris@19 120 }
Chris@19 121 }
Chris@19 122 }
Chris@19 123 }
Chris@19 124 }
Chris@19 125 }
Chris@19 126 VLEAVE();
Chris@19 127 }
Chris@19 128
Chris@19 129 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 130
Chris@19 131 void XSIMD(codelet_n1bv_12) (planner *p) {
Chris@19 132 X(kdft_register) (p, n1bv_12, &desc);
Chris@19 133 }
Chris@19 134
Chris@19 135 #else /* HAVE_FMA */
Chris@19 136
Chris@19 137 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
Chris@19 138
Chris@19 139 /*
Chris@19 140 * This function contains 48 FP additions, 8 FP multiplications,
Chris@19 141 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@19 142 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@19 143 */
Chris@19 144 #include "n1b.h"
Chris@19 145
Chris@19 146 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 147 {
Chris@19 148 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@19 149 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@19 150 {
Chris@19 151 INT i;
Chris@19 152 const R *xi;
Chris@19 153 R *xo;
Chris@19 154 xi = ii;
Chris@19 155 xo = io;
Chris@19 156 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@19 157 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
Chris@19 158 {
Chris@19 159 V T1, T6, T4, Tk, T9, Tl;
Chris@19 160 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 161 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 162 {
Chris@19 163 V T2, T3, T7, T8;
Chris@19 164 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 165 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 166 T4 = VADD(T2, T3);
Chris@19 167 Tk = VSUB(T2, T3);
Chris@19 168 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 169 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 170 T9 = VADD(T7, T8);
Chris@19 171 Tl = VSUB(T7, T8);
Chris@19 172 }
Chris@19 173 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@19 174 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@19 175 TG = VADD(T6, T9);
Chris@19 176 TF = VADD(T1, T4);
Chris@19 177 Ty = VADD(Tk, Tl);
Chris@19 178 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
Chris@19 179 }
Chris@19 180 {
Chris@19 181 V Tn, Tq, Te, To, Th, Tr;
Chris@19 182 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 183 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 184 {
Chris@19 185 V Tc, Td, Tf, Tg;
Chris@19 186 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 187 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@19 188 Te = VSUB(Tc, Td);
Chris@19 189 To = VADD(Tc, Td);
Chris@19 190 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 191 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 192 Th = VSUB(Tf, Tg);
Chris@19 193 Tr = VADD(Tf, Tg);
Chris@19 194 }
Chris@19 195 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
Chris@19 196 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@19 197 TJ = VADD(Tq, Tr);
Chris@19 198 TI = VADD(Tn, To);
Chris@19 199 Tx = VADD(Te, Th);
Chris@19 200 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
Chris@19 201 }
Chris@19 202 {
Chris@19 203 V TH, TK, TL, TM;
Chris@19 204 TH = VSUB(TF, TG);
Chris@19 205 TK = VBYI(VSUB(TI, TJ));
Chris@19 206 ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
Chris@19 207 ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
Chris@19 208 TL = VADD(TF, TG);
Chris@19 209 TM = VADD(TI, TJ);
Chris@19 210 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@19 211 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
Chris@19 212 }
Chris@19 213 {
Chris@19 214 V Tj, Tv, Tu, Tw, Tb, Tt;
Chris@19 215 Tb = VSUB(T5, Ta);
Chris@19 216 Tj = VSUB(Tb, Ti);
Chris@19 217 Tv = VADD(Tb, Ti);
Chris@19 218 Tt = VSUB(Tp, Ts);
Chris@19 219 Tu = VBYI(VADD(Tm, Tt));
Chris@19 220 Tw = VBYI(VSUB(Tt, Tm));
Chris@19 221 ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
Chris@19 222 ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
Chris@19 223 ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
Chris@19 224 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
Chris@19 225 }
Chris@19 226 {
Chris@19 227 V Tz, TD, TC, TE, TA, TB;
Chris@19 228 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
Chris@19 229 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
Chris@19 230 TA = VADD(T5, Ta);
Chris@19 231 TB = VADD(Tp, Ts);
Chris@19 232 TC = VSUB(TA, TB);
Chris@19 233 TE = VADD(TA, TB);
Chris@19 234 ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
Chris@19 235 ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
Chris@19 236 ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
Chris@19 237 ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
Chris@19 238 }
Chris@19 239 }
Chris@19 240 }
Chris@19 241 VLEAVE();
Chris@19 242 }
Chris@19 243
Chris@19 244 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 245
Chris@19 246 void XSIMD(codelet_n1bv_12) (planner *p) {
Chris@19 247 X(kdft_register) (p, n1bv_12, &desc);
Chris@19 248 }
Chris@19 249
Chris@19 250 #endif /* HAVE_FMA */