annotate fft/fftw/fftw-3.3.4/dft/simd/common/n1bv_11.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@19 22 /* Generated on Tue Mar 4 13:46:51 EST 2014 */
Chris@19 23
Chris@19 24 #include "codelet-dft.h"
Chris@19 25
Chris@19 26 #ifdef HAVE_FMA
Chris@19 27
Chris@19 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 11 -name n1bv_11 -include n1b.h */
Chris@19 29
Chris@19 30 /*
Chris@19 31 * This function contains 70 FP additions, 60 FP multiplications,
Chris@19 32 * (or, 15 additions, 5 multiplications, 55 fused multiply/add),
Chris@19 33 * 67 stack variables, 11 constants, and 22 memory accesses
Chris@19 34 */
Chris@19 35 #include "n1b.h"
Chris@19 36
Chris@19 37 static void n1bv_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 38 {
Chris@19 39 DVK(KP959492973, +0.959492973614497389890368057066327699062454848);
Chris@19 40 DVK(KP876768831, +0.876768831002589333891339807079336796764054852);
Chris@19 41 DVK(KP918985947, +0.918985947228994779780736114132655398124909697);
Chris@19 42 DVK(KP989821441, +0.989821441880932732376092037776718787376519372);
Chris@19 43 DVK(KP778434453, +0.778434453334651800608337670740821884709317477);
Chris@19 44 DVK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@19 45 DVK(KP372785597, +0.372785597771792209609773152906148328659002598);
Chris@19 46 DVK(KP634356270, +0.634356270682424498893150776899916060542806975);
Chris@19 47 DVK(KP715370323, +0.715370323453429719112414662767260662417897278);
Chris@19 48 DVK(KP342584725, +0.342584725681637509502641509861112333758894680);
Chris@19 49 DVK(KP521108558, +0.521108558113202722944698153526659300680427422);
Chris@19 50 {
Chris@19 51 INT i;
Chris@19 52 const R *xi;
Chris@19 53 R *xo;
Chris@19 54 xi = ii;
Chris@19 55 xo = io;
Chris@19 56 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(22, is), MAKE_VOLATILE_STRIDE(22, os)) {
Chris@19 57 V T1, Tb, T4, Tq, Tg, Tm, T7, Tp, Ta, To, Tc, T11;
Chris@19 58 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 59 {
Chris@19 60 V T2, T3, Te, Tf;
Chris@19 61 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 62 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 63 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 64 Tf = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 65 {
Chris@19 66 V T5, T6, T8, T9;
Chris@19 67 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 68 T6 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 69 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 70 T9 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 71 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 72 T4 = VADD(T2, T3);
Chris@19 73 Tq = VSUB(T2, T3);
Chris@19 74 Tg = VADD(Te, Tf);
Chris@19 75 Tm = VSUB(Te, Tf);
Chris@19 76 T7 = VADD(T5, T6);
Chris@19 77 Tp = VSUB(T5, T6);
Chris@19 78 Ta = VADD(T8, T9);
Chris@19 79 To = VSUB(T8, T9);
Chris@19 80 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 81 }
Chris@19 82 }
Chris@19 83 T11 = VFMA(LDK(KP521108558), Tm, Tq);
Chris@19 84 {
Chris@19 85 V TA, TS, TE, TW, Td, Tn, Ts, Tw, Tr, Tv, TT, TF;
Chris@19 86 Tr = VFNMS(LDK(KP521108558), Tq, Tp);
Chris@19 87 Tv = VFNMS(LDK(KP342584725), T7, Tg);
Chris@19 88 TA = VFMA(LDK(KP715370323), To, Tq);
Chris@19 89 TS = VFMA(LDK(KP521108558), To, Tm);
Chris@19 90 TE = VFNMS(LDK(KP342584725), T4, Ta);
Chris@19 91 TW = VFNMS(LDK(KP342584725), Ta, T7);
Chris@19 92 Td = VADD(Tb, Tc);
Chris@19 93 Tn = VSUB(Tb, Tc);
Chris@19 94 Ts = VFNMS(LDK(KP715370323), Tr, To);
Chris@19 95 Tw = VFNMS(LDK(KP634356270), Tv, T4);
Chris@19 96 TT = VFNMS(LDK(KP715370323), TS, Tp);
Chris@19 97 TF = VFNMS(LDK(KP634356270), TE, Tg);
Chris@19 98 {
Chris@19 99 V Tu, TV, TD, TL, T14, TP, TZ, Tj, Tz, TI, TB, TJ, TM;
Chris@19 100 TB = VFMA(LDK(KP372785597), Tn, TA);
Chris@19 101 TJ = VFNMS(LDK(KP521108558), Tp, Tn);
Chris@19 102 {
Chris@19 103 V T12, TN, TX, Th;
Chris@19 104 T12 = VFMA(LDK(KP715370323), T11, Tn);
Chris@19 105 ST(&(xo[0]), VADD(Tg, VADD(Td, VADD(Ta, VADD(T7, VADD(T4, T1))))), ovs, &(xo[0]));
Chris@19 106 TN = VFNMS(LDK(KP342584725), Td, T4);
Chris@19 107 TX = VFNMS(LDK(KP634356270), TW, Td);
Chris@19 108 Th = VFNMS(LDK(KP342584725), Tg, Td);
Chris@19 109 {
Chris@19 110 V Tt, Tx, TU, TG;
Chris@19 111 Tt = VFNMS(LDK(KP830830026), Ts, Tn);
Chris@19 112 Tx = VFNMS(LDK(KP778434453), Tw, Ta);
Chris@19 113 TU = VFMA(LDK(KP830830026), TT, Tq);
Chris@19 114 TG = VFNMS(LDK(KP778434453), TF, Td);
Chris@19 115 {
Chris@19 116 V TC, TK, T13, TO;
Chris@19 117 TC = VFNMS(LDK(KP830830026), TB, Tm);
Chris@19 118 TK = VFMA(LDK(KP715370323), TJ, Tm);
Chris@19 119 T13 = VFMA(LDK(KP830830026), T12, Tp);
Chris@19 120 TO = VFNMS(LDK(KP634356270), TN, T7);
Chris@19 121 {
Chris@19 122 V TY, Ti, Ty, TH;
Chris@19 123 TY = VFNMS(LDK(KP778434453), TX, T4);
Chris@19 124 Ti = VFNMS(LDK(KP634356270), Th, Ta);
Chris@19 125 Tu = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), Tt, Tm));
Chris@19 126 Ty = VFNMS(LDK(KP876768831), Tx, Td);
Chris@19 127 TV = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), TU, Tn));
Chris@19 128 TH = VFNMS(LDK(KP876768831), TG, T7);
Chris@19 129 TD = VMUL(LDK(KP989821441), VFMA(LDK(KP918985947), TC, Tp));
Chris@19 130 TL = VFNMS(LDK(KP830830026), TK, To);
Chris@19 131 T14 = VMUL(LDK(KP989821441), VFMA(LDK(KP918985947), T13, To));
Chris@19 132 TP = VFNMS(LDK(KP778434453), TO, Tg);
Chris@19 133 TZ = VFNMS(LDK(KP876768831), TY, Tg);
Chris@19 134 Tj = VFNMS(LDK(KP778434453), Ti, T7);
Chris@19 135 Tz = VFNMS(LDK(KP959492973), Ty, T1);
Chris@19 136 TI = VFNMS(LDK(KP959492973), TH, T1);
Chris@19 137 }
Chris@19 138 }
Chris@19 139 }
Chris@19 140 }
Chris@19 141 TM = VMUL(LDK(KP989821441), VFNMS(LDK(KP918985947), TL, Tq));
Chris@19 142 {
Chris@19 143 V TQ, T10, Tk, TR, Tl;
Chris@19 144 TQ = VFNMS(LDK(KP876768831), TP, Ta);
Chris@19 145 T10 = VFNMS(LDK(KP959492973), TZ, T1);
Chris@19 146 Tk = VFNMS(LDK(KP876768831), Tj, T4);
Chris@19 147 ST(&(xo[WS(os, 7)]), VFMAI(TD, Tz), ovs, &(xo[WS(os, 1)]));
Chris@19 148 ST(&(xo[WS(os, 4)]), VFNMSI(TD, Tz), ovs, &(xo[0]));
Chris@19 149 ST(&(xo[WS(os, 8)]), VFNMSI(TM, TI), ovs, &(xo[0]));
Chris@19 150 ST(&(xo[WS(os, 3)]), VFMAI(TM, TI), ovs, &(xo[WS(os, 1)]));
Chris@19 151 TR = VFNMS(LDK(KP959492973), TQ, T1);
Chris@19 152 ST(&(xo[WS(os, 10)]), VFNMSI(T14, T10), ovs, &(xo[0]));
Chris@19 153 ST(&(xo[WS(os, 1)]), VFMAI(T14, T10), ovs, &(xo[WS(os, 1)]));
Chris@19 154 Tl = VFNMS(LDK(KP959492973), Tk, T1);
Chris@19 155 ST(&(xo[WS(os, 9)]), VFMAI(TV, TR), ovs, &(xo[WS(os, 1)]));
Chris@19 156 ST(&(xo[WS(os, 2)]), VFNMSI(TV, TR), ovs, &(xo[0]));
Chris@19 157 ST(&(xo[WS(os, 6)]), VFNMSI(Tu, Tl), ovs, &(xo[0]));
Chris@19 158 ST(&(xo[WS(os, 5)]), VFMAI(Tu, Tl), ovs, &(xo[WS(os, 1)]));
Chris@19 159 }
Chris@19 160 }
Chris@19 161 }
Chris@19 162 }
Chris@19 163 }
Chris@19 164 VLEAVE();
Chris@19 165 }
Chris@19 166
Chris@19 167 static const kdft_desc desc = { 11, XSIMD_STRING("n1bv_11"), {15, 5, 55, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 168
Chris@19 169 void XSIMD(codelet_n1bv_11) (planner *p) {
Chris@19 170 X(kdft_register) (p, n1bv_11, &desc);
Chris@19 171 }
Chris@19 172
Chris@19 173 #else /* HAVE_FMA */
Chris@19 174
Chris@19 175 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 11 -name n1bv_11 -include n1b.h */
Chris@19 176
Chris@19 177 /*
Chris@19 178 * This function contains 70 FP additions, 50 FP multiplications,
Chris@19 179 * (or, 30 additions, 10 multiplications, 40 fused multiply/add),
Chris@19 180 * 32 stack variables, 10 constants, and 22 memory accesses
Chris@19 181 */
Chris@19 182 #include "n1b.h"
Chris@19 183
Chris@19 184 static void n1bv_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@19 185 {
Chris@19 186 DVK(KP959492973, +0.959492973614497389890368057066327699062454848);
Chris@19 187 DVK(KP654860733, +0.654860733945285064056925072466293553183791199);
Chris@19 188 DVK(KP142314838, +0.142314838273285140443792668616369668791051361);
Chris@19 189 DVK(KP415415013, +0.415415013001886425529274149229623203524004910);
Chris@19 190 DVK(KP841253532, +0.841253532831181168861811648919367717513292498);
Chris@19 191 DVK(KP540640817, +0.540640817455597582107635954318691695431770608);
Chris@19 192 DVK(KP909631995, +0.909631995354518371411715383079028460060241051);
Chris@19 193 DVK(KP989821441, +0.989821441880932732376092037776718787376519372);
Chris@19 194 DVK(KP755749574, +0.755749574354258283774035843972344420179717445);
Chris@19 195 DVK(KP281732556, +0.281732556841429697711417915346616899035777899);
Chris@19 196 {
Chris@19 197 INT i;
Chris@19 198 const R *xi;
Chris@19 199 R *xo;
Chris@19 200 xi = ii;
Chris@19 201 xo = io;
Chris@19 202 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(22, is), MAKE_VOLATILE_STRIDE(22, os)) {
Chris@19 203 V Th, T3, Tm, Tf, Ti, Tc, Tj, T9, Tk, T6, Tl, Ta, Tb, Ts, Tt;
Chris@19 204 Th = LD(&(xi[0]), ivs, &(xi[0]));
Chris@19 205 {
Chris@19 206 V T1, T2, Td, Te;
Chris@19 207 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@19 208 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@19 209 T3 = VSUB(T1, T2);
Chris@19 210 Tm = VADD(T1, T2);
Chris@19 211 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@19 212 Te = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@19 213 Tf = VSUB(Td, Te);
Chris@19 214 Ti = VADD(Td, Te);
Chris@19 215 }
Chris@19 216 Ta = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@19 217 Tb = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@19 218 Tc = VSUB(Ta, Tb);
Chris@19 219 Tj = VADD(Ta, Tb);
Chris@19 220 {
Chris@19 221 V T7, T8, T4, T5;
Chris@19 222 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@19 223 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@19 224 T9 = VSUB(T7, T8);
Chris@19 225 Tk = VADD(T7, T8);
Chris@19 226 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@19 227 T5 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@19 228 T6 = VSUB(T4, T5);
Chris@19 229 Tl = VADD(T4, T5);
Chris@19 230 }
Chris@19 231 ST(&(xo[0]), VADD(Th, VADD(Tm, VADD(Ti, VADD(Tl, VADD(Tj, Tk))))), ovs, &(xo[0]));
Chris@19 232 {
Chris@19 233 V Tg, Tn, Tu, Tv;
Chris@19 234 Tg = VBYI(VFMA(LDK(KP281732556), T3, VFMA(LDK(KP755749574), T6, VFNMS(LDK(KP909631995), Tc, VFNMS(LDK(KP540640817), Tf, VMUL(LDK(KP989821441), T9))))));
Chris@19 235 Tn = VFMA(LDK(KP841253532), Ti, VFMA(LDK(KP415415013), Tj, VFNMS(LDK(KP142314838), Tk, VFNMS(LDK(KP654860733), Tl, VFNMS(LDK(KP959492973), Tm, Th)))));
Chris@19 236 ST(&(xo[WS(os, 5)]), VADD(Tg, Tn), ovs, &(xo[WS(os, 1)]));
Chris@19 237 ST(&(xo[WS(os, 6)]), VSUB(Tn, Tg), ovs, &(xo[0]));
Chris@19 238 Tu = VBYI(VFMA(LDK(KP755749574), T3, VFMA(LDK(KP540640817), T6, VFNMS(LDK(KP909631995), T9, VFNMS(LDK(KP989821441), Tf, VMUL(LDK(KP281732556), Tc))))));
Chris@19 239 Tv = VFMA(LDK(KP841253532), Tl, VFMA(LDK(KP415415013), Tk, VFNMS(LDK(KP959492973), Tj, VFNMS(LDK(KP142314838), Ti, VFNMS(LDK(KP654860733), Tm, Th)))));
Chris@19 240 ST(&(xo[WS(os, 4)]), VADD(Tu, Tv), ovs, &(xo[0]));
Chris@19 241 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tu), ovs, &(xo[WS(os, 1)]));
Chris@19 242 }
Chris@19 243 Ts = VBYI(VFMA(LDK(KP909631995), T3, VFNMS(LDK(KP540640817), T9, VFNMS(LDK(KP989821441), Tc, VFNMS(LDK(KP281732556), T6, VMUL(LDK(KP755749574), Tf))))));
Chris@19 244 Tt = VFMA(LDK(KP415415013), Tm, VFMA(LDK(KP841253532), Tk, VFNMS(LDK(KP142314838), Tj, VFNMS(LDK(KP959492973), Tl, VFNMS(LDK(KP654860733), Ti, Th)))));
Chris@19 245 ST(&(xo[WS(os, 2)]), VADD(Ts, Tt), ovs, &(xo[0]));
Chris@19 246 ST(&(xo[WS(os, 9)]), VSUB(Tt, Ts), ovs, &(xo[WS(os, 1)]));
Chris@19 247 {
Chris@19 248 V Tq, Tr, To, Tp;
Chris@19 249 Tq = VBYI(VFMA(LDK(KP540640817), T3, VFMA(LDK(KP909631995), Tf, VFMA(LDK(KP989821441), T6, VFMA(LDK(KP755749574), Tc, VMUL(LDK(KP281732556), T9))))));
Chris@19 250 Tr = VFMA(LDK(KP841253532), Tm, VFMA(LDK(KP415415013), Ti, VFNMS(LDK(KP959492973), Tk, VFNMS(LDK(KP654860733), Tj, VFNMS(LDK(KP142314838), Tl, Th)))));
Chris@19 251 ST(&(xo[WS(os, 1)]), VADD(Tq, Tr), ovs, &(xo[WS(os, 1)]));
Chris@19 252 ST(&(xo[WS(os, 10)]), VSUB(Tr, Tq), ovs, &(xo[0]));
Chris@19 253 To = VBYI(VFMA(LDK(KP989821441), T3, VFMA(LDK(KP540640817), Tc, VFNMS(LDK(KP909631995), T6, VFNMS(LDK(KP281732556), Tf, VMUL(LDK(KP755749574), T9))))));
Chris@19 254 Tp = VFMA(LDK(KP415415013), Tl, VFMA(LDK(KP841253532), Tj, VFNMS(LDK(KP654860733), Tk, VFNMS(LDK(KP959492973), Ti, VFNMS(LDK(KP142314838), Tm, Th)))));
Chris@19 255 ST(&(xo[WS(os, 3)]), VADD(To, Tp), ovs, &(xo[WS(os, 1)]));
Chris@19 256 ST(&(xo[WS(os, 8)]), VSUB(Tp, To), ovs, &(xo[0]));
Chris@19 257 }
Chris@19 258 }
Chris@19 259 }
Chris@19 260 VLEAVE();
Chris@19 261 }
Chris@19 262
Chris@19 263 static const kdft_desc desc = { 11, XSIMD_STRING("n1bv_11"), {30, 10, 40, 0}, &GENUS, 0, 0, 0, 0 };
Chris@19 264
Chris@19 265 void XSIMD(codelet_n1bv_11) (planner *p) {
Chris@19 266 X(kdft_register) (p, n1bv_11, &desc);
Chris@19 267 }
Chris@19 268
Chris@19 269 #endif /* HAVE_FMA */