annotate fft/fftw/fftw-3.3.4/dft/rader.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 #include "dft.h"
Chris@19 22
Chris@19 23 /*
Chris@19 24 * Compute transforms of prime sizes using Rader's trick: turn them
Chris@19 25 * into convolutions of size n - 1, which you then perform via a pair
Chris@19 26 * of FFTs.
Chris@19 27 */
Chris@19 28
Chris@19 29 typedef struct {
Chris@19 30 solver super;
Chris@19 31 } S;
Chris@19 32
Chris@19 33 typedef struct {
Chris@19 34 plan_dft super;
Chris@19 35
Chris@19 36 plan *cld1, *cld2;
Chris@19 37 R *omega;
Chris@19 38 INT n, g, ginv;
Chris@19 39 INT is, os;
Chris@19 40 plan *cld_omega;
Chris@19 41 } P;
Chris@19 42
Chris@19 43 static rader_tl *omegas = 0;
Chris@19 44
Chris@19 45 static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv)
Chris@19 46 {
Chris@19 47 plan_dft *p = (plan_dft *) p_;
Chris@19 48 R *omega;
Chris@19 49 INT i, gpower;
Chris@19 50 trigreal scale;
Chris@19 51 triggen *t;
Chris@19 52
Chris@19 53 if ((omega = X(rader_tl_find)(n, n, ginv, omegas)))
Chris@19 54 return omega;
Chris@19 55
Chris@19 56 omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES);
Chris@19 57
Chris@19 58 scale = n - 1.0; /* normalization for convolution */
Chris@19 59
Chris@19 60 t = X(mktriggen)(wakefulness, n);
Chris@19 61 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
Chris@19 62 trigreal w[2];
Chris@19 63 t->cexpl(t, gpower, w);
Chris@19 64 omega[2*i] = w[0] / scale;
Chris@19 65 omega[2*i+1] = FFT_SIGN * w[1] / scale;
Chris@19 66 }
Chris@19 67 X(triggen_destroy)(t);
Chris@19 68 A(gpower == 1);
Chris@19 69
Chris@19 70 p->apply(p_, omega, omega + 1, omega, omega + 1);
Chris@19 71
Chris@19 72 X(rader_tl_insert)(n, n, ginv, omega, &omegas);
Chris@19 73 return omega;
Chris@19 74 }
Chris@19 75
Chris@19 76 static void free_omega(R *omega)
Chris@19 77 {
Chris@19 78 X(rader_tl_delete)(omega, &omegas);
Chris@19 79 }
Chris@19 80
Chris@19 81
Chris@19 82 /***************************************************************************/
Chris@19 83
Chris@19 84 /* Below, we extensively use the identity that fft(x*)* = ifft(x) in
Chris@19 85 order to share data between forward and backward transforms and to
Chris@19 86 obviate the necessity of having separate forward and backward
Chris@19 87 plans. (Although we often compute separate plans these days anyway
Chris@19 88 due to the differing strides, etcetera.)
Chris@19 89
Chris@19 90 Of course, since the new FFTW gives us separate pointers to
Chris@19 91 the real and imaginary parts, we could have instead used the
Chris@19 92 fft(r,i) = ifft(i,r) form of this identity, but it was easier to
Chris@19 93 reuse the code from our old version. */
Chris@19 94
Chris@19 95 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@19 96 {
Chris@19 97 const P *ego = (const P *) ego_;
Chris@19 98 INT is, os;
Chris@19 99 INT k, gpower, g, r;
Chris@19 100 R *buf;
Chris@19 101 R r0 = ri[0], i0 = ii[0];
Chris@19 102
Chris@19 103 r = ego->n; is = ego->is; os = ego->os; g = ego->g;
Chris@19 104 buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
Chris@19 105
Chris@19 106 /* First, permute the input, storing in buf: */
Chris@19 107 for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
Chris@19 108 R rA, iA;
Chris@19 109 rA = ri[gpower * is];
Chris@19 110 iA = ii[gpower * is];
Chris@19 111 buf[2*k] = rA; buf[2*k + 1] = iA;
Chris@19 112 }
Chris@19 113 /* gpower == g^(r-1) mod r == 1 */;
Chris@19 114
Chris@19 115
Chris@19 116 /* compute DFT of buf, storing in output (except DC): */
Chris@19 117 {
Chris@19 118 plan_dft *cld = (plan_dft *) ego->cld1;
Chris@19 119 cld->apply(ego->cld1, buf, buf+1, ro+os, io+os);
Chris@19 120 }
Chris@19 121
Chris@19 122 /* set output DC component: */
Chris@19 123 {
Chris@19 124 ro[0] = r0 + ro[os];
Chris@19 125 io[0] = i0 + io[os];
Chris@19 126 }
Chris@19 127
Chris@19 128 /* now, multiply by omega: */
Chris@19 129 {
Chris@19 130 const R *omega = ego->omega;
Chris@19 131 for (k = 0; k < r - 1; ++k) {
Chris@19 132 E rB, iB, rW, iW;
Chris@19 133 rW = omega[2*k];
Chris@19 134 iW = omega[2*k+1];
Chris@19 135 rB = ro[(k+1)*os];
Chris@19 136 iB = io[(k+1)*os];
Chris@19 137 ro[(k+1)*os] = rW * rB - iW * iB;
Chris@19 138 io[(k+1)*os] = -(rW * iB + iW * rB);
Chris@19 139 }
Chris@19 140 }
Chris@19 141
Chris@19 142 /* this will add input[0] to all of the outputs after the ifft */
Chris@19 143 ro[os] += r0;
Chris@19 144 io[os] -= i0;
Chris@19 145
Chris@19 146 /* inverse FFT: */
Chris@19 147 {
Chris@19 148 plan_dft *cld = (plan_dft *) ego->cld2;
Chris@19 149 cld->apply(ego->cld2, ro+os, io+os, buf, buf+1);
Chris@19 150 }
Chris@19 151
Chris@19 152 /* finally, do inverse permutation to unshuffle the output: */
Chris@19 153 {
Chris@19 154 INT ginv = ego->ginv;
Chris@19 155 gpower = 1;
Chris@19 156 for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
Chris@19 157 ro[gpower * os] = buf[2*k];
Chris@19 158 io[gpower * os] = -buf[2*k+1];
Chris@19 159 }
Chris@19 160 A(gpower == 1);
Chris@19 161 }
Chris@19 162
Chris@19 163
Chris@19 164 X(ifree)(buf);
Chris@19 165 }
Chris@19 166
Chris@19 167 /***************************************************************************/
Chris@19 168
Chris@19 169 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 170 {
Chris@19 171 P *ego = (P *) ego_;
Chris@19 172
Chris@19 173 X(plan_awake)(ego->cld1, wakefulness);
Chris@19 174 X(plan_awake)(ego->cld2, wakefulness);
Chris@19 175 X(plan_awake)(ego->cld_omega, wakefulness);
Chris@19 176
Chris@19 177 switch (wakefulness) {
Chris@19 178 case SLEEPY:
Chris@19 179 free_omega(ego->omega);
Chris@19 180 ego->omega = 0;
Chris@19 181 break;
Chris@19 182 default:
Chris@19 183 ego->g = X(find_generator)(ego->n);
Chris@19 184 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
Chris@19 185 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
Chris@19 186
Chris@19 187 ego->omega = mkomega(wakefulness,
Chris@19 188 ego->cld_omega, ego->n, ego->ginv);
Chris@19 189 break;
Chris@19 190 }
Chris@19 191 }
Chris@19 192
Chris@19 193 static void destroy(plan *ego_)
Chris@19 194 {
Chris@19 195 P *ego = (P *) ego_;
Chris@19 196 X(plan_destroy_internal)(ego->cld_omega);
Chris@19 197 X(plan_destroy_internal)(ego->cld2);
Chris@19 198 X(plan_destroy_internal)(ego->cld1);
Chris@19 199 }
Chris@19 200
Chris@19 201 static void print(const plan *ego_, printer *p)
Chris@19 202 {
Chris@19 203 const P *ego = (const P *)ego_;
Chris@19 204 p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)",
Chris@19 205 ego->n, ego->is, ego->os, ego->cld1);
Chris@19 206 if (ego->cld2 != ego->cld1)
Chris@19 207 p->print(p, "%(%p%)", ego->cld2);
Chris@19 208 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
Chris@19 209 p->print(p, "%(%p%)", ego->cld_omega);
Chris@19 210 p->putchr(p, ')');
Chris@19 211 }
Chris@19 212
Chris@19 213 static int applicable(const solver *ego_, const problem *p_,
Chris@19 214 const planner *plnr)
Chris@19 215 {
Chris@19 216 const problem_dft *p = (const problem_dft *) p_;
Chris@19 217 UNUSED(ego_);
Chris@19 218 return (1
Chris@19 219 && p->sz->rnk == 1
Chris@19 220 && p->vecsz->rnk == 0
Chris@19 221 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
Chris@19 222 && X(is_prime)(p->sz->dims[0].n)
Chris@19 223
Chris@19 224 /* proclaim the solver SLOW if p-1 is not easily factorizable.
Chris@19 225 Bluestein should take care of this case. */
Chris@19 226 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
Chris@19 227 );
Chris@19 228 }
Chris@19 229
Chris@19 230 static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io,
Chris@19 231 planner *plnr)
Chris@19 232 {
Chris@19 233 plan *cld1 = (plan *) 0;
Chris@19 234 plan *cld2 = (plan *) 0;
Chris@19 235 plan *cld_omega = (plan *) 0;
Chris@19 236 R *buf = (R *) 0;
Chris@19 237
Chris@19 238 /* initial allocation for the purpose of planning */
Chris@19 239 buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS);
Chris@19 240
Chris@19 241 cld1 = X(mkplan_f_d)(plnr,
Chris@19 242 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os),
Chris@19 243 X(mktensor_1d)(1, 0, 0),
Chris@19 244 buf, buf + 1, ro + os, io + os),
Chris@19 245 NO_SLOW, 0, 0);
Chris@19 246 if (!cld1) goto nada;
Chris@19 247
Chris@19 248 cld2 = X(mkplan_f_d)(plnr,
Chris@19 249 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2),
Chris@19 250 X(mktensor_1d)(1, 0, 0),
Chris@19 251 ro + os, io + os, buf, buf + 1),
Chris@19 252 NO_SLOW, 0, 0);
Chris@19 253
Chris@19 254 if (!cld2) goto nada;
Chris@19 255
Chris@19 256 /* plan for omega array */
Chris@19 257 cld_omega = X(mkplan_f_d)(plnr,
Chris@19 258 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2),
Chris@19 259 X(mktensor_1d)(1, 0, 0),
Chris@19 260 buf, buf + 1, buf, buf + 1),
Chris@19 261 NO_SLOW, ESTIMATE, 0);
Chris@19 262 if (!cld_omega) goto nada;
Chris@19 263
Chris@19 264 /* deallocate buffers; let awake() or apply() allocate them for real */
Chris@19 265 X(ifree)(buf);
Chris@19 266 buf = 0;
Chris@19 267
Chris@19 268 pln->cld1 = cld1;
Chris@19 269 pln->cld2 = cld2;
Chris@19 270 pln->cld_omega = cld_omega;
Chris@19 271 pln->omega = 0;
Chris@19 272 pln->n = n;
Chris@19 273 pln->is = is;
Chris@19 274 pln->os = os;
Chris@19 275
Chris@19 276 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
Chris@19 277 pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6;
Chris@19 278 pln->super.super.ops.add += (n - 1) * 2 + 4;
Chris@19 279 pln->super.super.ops.mul += (n - 1) * 4;
Chris@19 280
Chris@19 281 return 1;
Chris@19 282
Chris@19 283 nada:
Chris@19 284 X(ifree0)(buf);
Chris@19 285 X(plan_destroy_internal)(cld_omega);
Chris@19 286 X(plan_destroy_internal)(cld2);
Chris@19 287 X(plan_destroy_internal)(cld1);
Chris@19 288 return 0;
Chris@19 289 }
Chris@19 290
Chris@19 291 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@19 292 {
Chris@19 293 const problem_dft *p = (const problem_dft *) p_;
Chris@19 294 P *pln;
Chris@19 295 INT n;
Chris@19 296 INT is, os;
Chris@19 297
Chris@19 298 static const plan_adt padt = {
Chris@19 299 X(dft_solve), awake, print, destroy
Chris@19 300 };
Chris@19 301
Chris@19 302 if (!applicable(ego, p_, plnr))
Chris@19 303 return (plan *) 0;
Chris@19 304
Chris@19 305 n = p->sz->dims[0].n;
Chris@19 306 is = p->sz->dims[0].is;
Chris@19 307 os = p->sz->dims[0].os;
Chris@19 308
Chris@19 309 pln = MKPLAN_DFT(P, &padt, apply);
Chris@19 310 if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) {
Chris@19 311 X(ifree)(pln);
Chris@19 312 return (plan *) 0;
Chris@19 313 }
Chris@19 314 return &(pln->super.super);
Chris@19 315 }
Chris@19 316
Chris@19 317 static solver *mksolver(void)
Chris@19 318 {
Chris@19 319 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@19 320 S *slv = MKSOLVER(S, &sadt);
Chris@19 321 return &(slv->super);
Chris@19 322 }
Chris@19 323
Chris@19 324 void X(dft_rader_register)(planner *p)
Chris@19 325 {
Chris@19 326 REGISTER_SOLVER(p, mksolver());
Chris@19 327 }