annotate fft/fftw/fftw-3.3.4/dft/problem.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 #include "dft.h"
Chris@19 23 #include <stddef.h>
Chris@19 24
Chris@19 25 static void destroy(problem *ego_)
Chris@19 26 {
Chris@19 27 problem_dft *ego = (problem_dft *) ego_;
Chris@19 28 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@19 29 X(ifree)(ego_);
Chris@19 30 }
Chris@19 31
Chris@19 32 static void hash(const problem *p_, md5 *m)
Chris@19 33 {
Chris@19 34 const problem_dft *p = (const problem_dft *) p_;
Chris@19 35 X(md5puts)(m, "dft");
Chris@19 36 X(md5int)(m, p->ri == p->ro);
Chris@19 37 X(md5INT)(m, p->ii - p->ri);
Chris@19 38 X(md5INT)(m, p->io - p->ro);
Chris@19 39 X(md5int)(m, X(alignment_of)(p->ri));
Chris@19 40 X(md5int)(m, X(alignment_of)(p->ii));
Chris@19 41 X(md5int)(m, X(alignment_of)(p->ro));
Chris@19 42 X(md5int)(m, X(alignment_of)(p->io));
Chris@19 43 X(tensor_md5)(m, p->sz);
Chris@19 44 X(tensor_md5)(m, p->vecsz);
Chris@19 45 }
Chris@19 46
Chris@19 47 static void print(const problem *ego_, printer *p)
Chris@19 48 {
Chris@19 49 const problem_dft *ego = (const problem_dft *) ego_;
Chris@19 50 p->print(p, "(dft %d %d %d %D %D %T %T)",
Chris@19 51 ego->ri == ego->ro,
Chris@19 52 X(alignment_of)(ego->ri),
Chris@19 53 X(alignment_of)(ego->ro),
Chris@19 54 (INT)(ego->ii - ego->ri),
Chris@19 55 (INT)(ego->io - ego->ro),
Chris@19 56 ego->sz,
Chris@19 57 ego->vecsz);
Chris@19 58 }
Chris@19 59
Chris@19 60 static void zero(const problem *ego_)
Chris@19 61 {
Chris@19 62 const problem_dft *ego = (const problem_dft *) ego_;
Chris@19 63 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
Chris@19 64 X(dft_zerotens)(sz, UNTAINT(ego->ri), UNTAINT(ego->ii));
Chris@19 65 X(tensor_destroy)(sz);
Chris@19 66 }
Chris@19 67
Chris@19 68 static const problem_adt padt =
Chris@19 69 {
Chris@19 70 PROBLEM_DFT,
Chris@19 71 hash,
Chris@19 72 zero,
Chris@19 73 print,
Chris@19 74 destroy
Chris@19 75 };
Chris@19 76
Chris@19 77 problem *X(mkproblem_dft)(const tensor *sz, const tensor *vecsz,
Chris@19 78 R *ri, R *ii, R *ro, R *io)
Chris@19 79 {
Chris@19 80 problem_dft *ego;
Chris@19 81
Chris@19 82 /* enforce pointer equality if untainted pointers are equal */
Chris@19 83 if (UNTAINT(ri) == UNTAINT(ro))
Chris@19 84 ri = ro = JOIN_TAINT(ri, ro);
Chris@19 85 if (UNTAINT(ii) == UNTAINT(io))
Chris@19 86 ii = io = JOIN_TAINT(ii, io);
Chris@19 87
Chris@19 88 /* more correctness conditions: */
Chris@19 89 A(TAINTOF(ri) == TAINTOF(ii));
Chris@19 90 A(TAINTOF(ro) == TAINTOF(io));
Chris@19 91
Chris@19 92 A(X(tensor_kosherp)(sz));
Chris@19 93 A(X(tensor_kosherp)(vecsz));
Chris@19 94
Chris@19 95 if (ri == ro || ii == io) {
Chris@19 96 /* If either real or imag pointers are in place, both must be. */
Chris@19 97 if (ri != ro || ii != io || !X(tensor_inplace_locations)(sz, vecsz))
Chris@19 98 return X(mkproblem_unsolvable)();
Chris@19 99 }
Chris@19 100
Chris@19 101 ego = (problem_dft *)X(mkproblem)(sizeof(problem_dft), &padt);
Chris@19 102
Chris@19 103 ego->sz = X(tensor_compress)(sz);
Chris@19 104 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@19 105 ego->ri = ri;
Chris@19 106 ego->ii = ii;
Chris@19 107 ego->ro = ro;
Chris@19 108 ego->io = io;
Chris@19 109
Chris@19 110 A(FINITE_RNK(ego->sz->rnk));
Chris@19 111 return &(ego->super);
Chris@19 112 }
Chris@19 113
Chris@19 114 /* Same as X(mkproblem_dft), but also destroy input tensors. */
Chris@19 115 problem *X(mkproblem_dft_d)(tensor *sz, tensor *vecsz,
Chris@19 116 R *ri, R *ii, R *ro, R *io)
Chris@19 117 {
Chris@19 118 problem *p = X(mkproblem_dft)(sz, vecsz, ri, ii, ro, io);
Chris@19 119 X(tensor_destroy2)(vecsz, sz);
Chris@19 120 return p;
Chris@19 121 }