annotate fft/fftw/fftw-3.3.4/dft/bluestein.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 #include "dft.h"
Chris@19 22
Chris@19 23 typedef struct {
Chris@19 24 solver super;
Chris@19 25 } S;
Chris@19 26
Chris@19 27 typedef struct {
Chris@19 28 plan_dft super;
Chris@19 29 INT n; /* problem size */
Chris@19 30 INT nb; /* size of convolution */
Chris@19 31 R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */
Chris@19 32 R *W; /* DFT(w) */
Chris@19 33 plan *cldf;
Chris@19 34 INT is, os;
Chris@19 35 } P;
Chris@19 36
Chris@19 37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
Chris@19 38 {
Chris@19 39 INT k, ksq, n2 = 2 * n;
Chris@19 40 triggen *t = X(mktriggen)(wakefulness, n2);
Chris@19 41
Chris@19 42 ksq = 0;
Chris@19 43 for (k = 0; k < n; ++k) {
Chris@19 44 t->cexp(t, ksq, w+2*k);
Chris@19 45 /* careful with overflow */
Chris@19 46 ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
Chris@19 47 }
Chris@19 48
Chris@19 49 X(triggen_destroy)(t);
Chris@19 50 }
Chris@19 51
Chris@19 52 static void mktwiddle(enum wakefulness wakefulness, P *p)
Chris@19 53 {
Chris@19 54 INT i;
Chris@19 55 INT n = p->n, nb = p->nb;
Chris@19 56 R *w, *W;
Chris@19 57 E nbf = (E)nb;
Chris@19 58
Chris@19 59 p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
Chris@19 60 p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
Chris@19 61
Chris@19 62 bluestein_sequence(wakefulness, n, w);
Chris@19 63
Chris@19 64 for (i = 0; i < nb; ++i)
Chris@19 65 W[2*i] = W[2*i+1] = K(0.0);
Chris@19 66
Chris@19 67 W[0] = w[0] / nbf;
Chris@19 68 W[1] = w[1] / nbf;
Chris@19 69
Chris@19 70 for (i = 1; i < n; ++i) {
Chris@19 71 W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
Chris@19 72 W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
Chris@19 73 }
Chris@19 74
Chris@19 75 {
Chris@19 76 plan_dft *cldf = (plan_dft *)p->cldf;
Chris@19 77 /* cldf must be awake */
Chris@19 78 cldf->apply(p->cldf, W, W+1, W, W+1);
Chris@19 79 }
Chris@19 80 }
Chris@19 81
Chris@19 82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@19 83 {
Chris@19 84 const P *ego = (const P *) ego_;
Chris@19 85 INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
Chris@19 86 R *w = ego->w, *W = ego->W;
Chris@19 87 R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
Chris@19 88
Chris@19 89 /* multiply input by conjugate bluestein sequence */
Chris@19 90 for (i = 0; i < n; ++i) {
Chris@19 91 E xr = ri[i*is], xi = ii[i*is];
Chris@19 92 E wr = w[2*i], wi = w[2*i+1];
Chris@19 93 b[2*i] = xr * wr + xi * wi;
Chris@19 94 b[2*i+1] = xi * wr - xr * wi;
Chris@19 95 }
Chris@19 96
Chris@19 97 for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
Chris@19 98
Chris@19 99 /* convolution: FFT */
Chris@19 100 {
Chris@19 101 plan_dft *cldf = (plan_dft *)ego->cldf;
Chris@19 102 cldf->apply(ego->cldf, b, b+1, b, b+1);
Chris@19 103 }
Chris@19 104
Chris@19 105 /* convolution: pointwise multiplication */
Chris@19 106 for (i = 0; i < nb; ++i) {
Chris@19 107 E xr = b[2*i], xi = b[2*i+1];
Chris@19 108 E wr = W[2*i], wi = W[2*i+1];
Chris@19 109 b[2*i] = xi * wr + xr * wi;
Chris@19 110 b[2*i+1] = xr * wr - xi * wi;
Chris@19 111 }
Chris@19 112
Chris@19 113 /* convolution: IFFT by FFT with real/imag input/output swapped */
Chris@19 114 {
Chris@19 115 plan_dft *cldf = (plan_dft *)ego->cldf;
Chris@19 116 cldf->apply(ego->cldf, b, b+1, b, b+1);
Chris@19 117 }
Chris@19 118
Chris@19 119 /* multiply output by conjugate bluestein sequence */
Chris@19 120 for (i = 0; i < n; ++i) {
Chris@19 121 E xi = b[2*i], xr = b[2*i+1];
Chris@19 122 E wr = w[2*i], wi = w[2*i+1];
Chris@19 123 ro[i*os] = xr * wr + xi * wi;
Chris@19 124 io[i*os] = xi * wr - xr * wi;
Chris@19 125 }
Chris@19 126
Chris@19 127 X(ifree)(b);
Chris@19 128 }
Chris@19 129
Chris@19 130 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 131 {
Chris@19 132 P *ego = (P *) ego_;
Chris@19 133
Chris@19 134 X(plan_awake)(ego->cldf, wakefulness);
Chris@19 135
Chris@19 136 switch (wakefulness) {
Chris@19 137 case SLEEPY:
Chris@19 138 X(ifree0)(ego->w); ego->w = 0;
Chris@19 139 X(ifree0)(ego->W); ego->W = 0;
Chris@19 140 break;
Chris@19 141 default:
Chris@19 142 A(!ego->w);
Chris@19 143 mktwiddle(wakefulness, ego);
Chris@19 144 break;
Chris@19 145 }
Chris@19 146 }
Chris@19 147
Chris@19 148 static int applicable(const solver *ego, const problem *p_,
Chris@19 149 const planner *plnr)
Chris@19 150 {
Chris@19 151 const problem_dft *p = (const problem_dft *) p_;
Chris@19 152 UNUSED(ego);
Chris@19 153 return (1
Chris@19 154 && p->sz->rnk == 1
Chris@19 155 && p->vecsz->rnk == 0
Chris@19 156 /* FIXME: allow other sizes */
Chris@19 157 && X(is_prime)(p->sz->dims[0].n)
Chris@19 158
Chris@19 159 /* FIXME: avoid infinite recursion of bluestein with itself.
Chris@19 160 This works because all factors in child problems are 2, 3, 5 */
Chris@19 161 && p->sz->dims[0].n > 16
Chris@19 162
Chris@19 163 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
Chris@19 164 );
Chris@19 165 }
Chris@19 166
Chris@19 167 static void destroy(plan *ego_)
Chris@19 168 {
Chris@19 169 P *ego = (P *) ego_;
Chris@19 170 X(plan_destroy_internal)(ego->cldf);
Chris@19 171 }
Chris@19 172
Chris@19 173 static void print(const plan *ego_, printer *p)
Chris@19 174 {
Chris@19 175 const P *ego = (const P *)ego_;
Chris@19 176 p->print(p, "(dft-bluestein-%D/%D%(%p%))",
Chris@19 177 ego->n, ego->nb, ego->cldf);
Chris@19 178 }
Chris@19 179
Chris@19 180 static INT choose_transform_size(INT minsz)
Chris@19 181 {
Chris@19 182 while (!X(factors_into_small_primes)(minsz))
Chris@19 183 ++minsz;
Chris@19 184 return minsz;
Chris@19 185 }
Chris@19 186
Chris@19 187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@19 188 {
Chris@19 189 const problem_dft *p = (const problem_dft *) p_;
Chris@19 190 P *pln;
Chris@19 191 INT n, nb;
Chris@19 192 plan *cldf = 0;
Chris@19 193 R *buf = (R *) 0;
Chris@19 194
Chris@19 195 static const plan_adt padt = {
Chris@19 196 X(dft_solve), awake, print, destroy
Chris@19 197 };
Chris@19 198
Chris@19 199 if (!applicable(ego, p_, plnr))
Chris@19 200 return (plan *) 0;
Chris@19 201
Chris@19 202 n = p->sz->dims[0].n;
Chris@19 203 nb = choose_transform_size(2 * n - 1);
Chris@19 204 buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
Chris@19 205
Chris@19 206 cldf = X(mkplan_f_d)(plnr,
Chris@19 207 X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
Chris@19 208 X(mktensor_1d)(1, 0, 0),
Chris@19 209 buf, buf+1,
Chris@19 210 buf, buf+1),
Chris@19 211 NO_SLOW, 0, 0);
Chris@19 212 if (!cldf) goto nada;
Chris@19 213
Chris@19 214 X(ifree)(buf);
Chris@19 215
Chris@19 216 pln = MKPLAN_DFT(P, &padt, apply);
Chris@19 217
Chris@19 218 pln->n = n;
Chris@19 219 pln->nb = nb;
Chris@19 220 pln->w = 0;
Chris@19 221 pln->W = 0;
Chris@19 222 pln->cldf = cldf;
Chris@19 223 pln->is = p->sz->dims[0].is;
Chris@19 224 pln->os = p->sz->dims[0].os;
Chris@19 225
Chris@19 226 X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
Chris@19 227 pln->super.super.ops.add += 4 * n + 2 * nb;
Chris@19 228 pln->super.super.ops.mul += 8 * n + 4 * nb;
Chris@19 229 pln->super.super.ops.other += 6 * (n + nb);
Chris@19 230
Chris@19 231 return &(pln->super.super);
Chris@19 232
Chris@19 233 nada:
Chris@19 234 X(ifree0)(buf);
Chris@19 235 X(plan_destroy_internal)(cldf);
Chris@19 236 return (plan *)0;
Chris@19 237 }
Chris@19 238
Chris@19 239
Chris@19 240 static solver *mksolver(void)
Chris@19 241 {
Chris@19 242 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@19 243 S *slv = MKSOLVER(S, &sadt);
Chris@19 244 return &(slv->super);
Chris@19 245 }
Chris@19 246
Chris@19 247 void X(dft_bluestein_register)(planner *p)
Chris@19 248 {
Chris@19 249 REGISTER_SOLVER(p, mksolver());
Chris@19 250 }