p@36: p@36: \section{Hybrid Music Recommender} p@36: p@36: The hybrid music recommender approach is an implementation of feature augmentation and meta-level methods. One advantage of the meta-level method is the use of compressed users and songs information instead of sparse raw data. p@36: %\begin{itemize} p@36: %\item We model bananas and plums using a density estimation of the colour space. p@36: %\item We fit a Gaussian Mixture Model using Expectation Maximization. We select the number of clusters using an MDL criteria. p@36: %\item Typical image examples of bananas and plums look like this: p@36: %\end{itemize} p@36: p@36: \begin{center} p@36: \resizebox*{0.9\columnwidth}{!}{\includegraphics{images/diagram_hybrid_music_recommender.eps}}\\ p@36: {\large \textbf{Fig. 1.} Diagram of our hybrid music recommender approach} p@36: %\begin{tabular}{c@{ }c} p@36: %\resizebox*{0.45\columnwidth}{!}{\includegraphics{images/diagram_hybrid_music_recommender.eps}} & p@36: %\resizebox*{0.45\columnwidth}{!}{\includegraphics{images/fruit/plums.eps}} \\ p@36: %Bananas & Plums \\ p@36: %\end{tabular} p@36: \end{center}