Mercurial > hg > hybrid-music-recommender-using-content-based-and-social-information
diff Code/genre_classification/learning/convolutional_mlp.py @ 24:68a62ca32441
Organized python scripts
author | Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk> |
---|---|
date | Sat, 15 Aug 2015 19:16:17 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Code/genre_classification/learning/convolutional_mlp.py Sat Aug 15 19:16:17 2015 +0100 @@ -0,0 +1,415 @@ +"""This tutorial introduces the LeNet5 neural network architecture +using Theano. LeNet5 is a convolutional neural network, good for +classifying images. This tutorial shows how to build the architecture, +and comes with all the hyper-parameters you need to reproduce the +paper's MNIST results. + + +This implementation simplifies the model in the following ways: + + - LeNetConvPool doesn't implement location-specific gain and bias parameters + - LeNetConvPool doesn't implement pooling by average, it implements pooling + by max. + - Digit classification is implemented with a logistic regression rather than + an RBF network + - LeNet5 was not fully-connected convolutions at second layer + +References: + - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: + Gradient-Based Learning Applied to Document + Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. + http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf + +""" +import os +import sys +import timeit + +import numpy + +import theano +import theano.tensor as T +from theano.tensor.signal import downsample +from theano.tensor.nnet import conv + +from logistic_sgd import LogisticRegression, load_data +from mlp import HiddenLayer + +# Paulo Chiliguano: Additional libraries +import cPickle +from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams + +# Paulo Chiliguano: Rectifier Linear Unit +# Source: http://stackoverflow.com/questions/26497564/theano-hiddenlayer-activation-function +def relu(x): + return T.maximum(0.,x) + +# Paulo: Random Streams +srng = RandomStreams(seed=234) + +class LeNetConvPoolLayer(object): + """Pool Layer of a convolutional network """ + + def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): + """ + Allocate a LeNetConvPoolLayer with shared variable internal parameters. + + :type rng: numpy.random.RandomState + :param rng: a random number generator used to initialize weights + + :type input: theano.tensor.dtensor4 + :param input: symbolic image tensor, of shape image_shape + + :type filter_shape: tuple or list of length 4 + :param filter_shape: (number of filters, num input feature maps, + filter height, filter width) + + :type image_shape: tuple or list of length 4 + :param image_shape: (batch size, num input feature maps, + image height, image width) + + :type poolsize: tuple or list of length 2 + :param poolsize: the downsampling (pooling) factor (#rows, #cols) + """ + + assert image_shape[1] == filter_shape[1] + self.input = input + + # there are "num input feature maps * filter height * filter width" + # inputs to each hidden unit + fan_in = numpy.prod(filter_shape[1:]) + # each unit in the lower layer receives a gradient from: + # "num output feature maps * filter height * filter width" / + # pooling size + fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / + numpy.prod(poolsize)) + # initialize weights with random weights + W_bound = numpy.sqrt(6. / (fan_in + fan_out)) + self.W = theano.shared( + numpy.asarray( + rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), + dtype=theano.config.floatX + ), + borrow=True + ) + + # the bias is a 1D tensor -- one bias per output feature map + b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) + self.b = theano.shared(value=b_values, borrow=True) + + # convolve input feature maps with filters + conv_out = conv.conv2d( + input=input, + filters=self.W, + filter_shape=filter_shape, + image_shape=image_shape + ) + + # downsample each feature map individually, using maxpooling + pooled_out = downsample.max_pool_2d( + input=conv_out, + ds=poolsize, + ignore_border=True + ) + + # Paulo: dropout + # Source: https://github.com/Newmu/Theano-Tutorials/blob/master/5_convolutional_net.py + retain_prob = 1 - 0.20 + pooled_out *= srng.binomial( + pooled_out.shape, + p=retain_prob, + dtype=theano.config.floatX) + pooled_out /= retain_prob + + # add the bias term. Since the bias is a vector (1D array), we first + # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will + # thus be broadcasted across mini-batches and feature map + # width & height + #self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) + self.output = relu(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) + + # store parameters of this layer + self.params = [self.W, self.b] + + # keep track of model input + self.input = input + + +def evaluate_lenet5(learning_rate=0.1, n_epochs=200, + dataset='mnist.pkl.gz', + nkerns=[20, 50], batch_size=500): + """ Demonstrates lenet on MNIST dataset + + :type learning_rate: float + :param learning_rate: learning rate used (factor for the stochastic + gradient) + + :type n_epochs: int + :param n_epochs: maximal number of epochs to run the optimizer + + :type dataset: string + :param dataset: path to the dataset used for training /testing (MNIST here) + + :type nkerns: list of ints + :param nkerns: number of kernels on each layer + """ + + rng = numpy.random.RandomState(23455) + + datasets = load_data(dataset) + + train_set_x, train_set_y = datasets[0] + valid_set_x, valid_set_y = datasets[1] + test_set_x, test_set_y = datasets[2] + + # compute number of minibatches for training, validation and testing + n_train_batches = train_set_x.get_value(borrow=True).shape[0] + n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] + n_test_batches = test_set_x.get_value(borrow=True).shape[0] + + n_train_batches /= batch_size + n_valid_batches /= batch_size + n_test_batches /= batch_size + + # allocate symbolic variables for the data + index = T.lscalar() # index to a [mini]batch + + # start-snippet-1 + x = T.matrix('x') # the data is presented as rasterized images + y = T.ivector('y') # the labels are presented as 1D vector of + # [int] labels + + ###################### + # BUILD ACTUAL MODEL # + ###################### + print '... building the model' + + # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) + # to a 4D tensor, compatible with our LeNetConvPoolLayer + # (28, 28) is the size of MNIST images. + #layer0_input = x.reshape((batch_size, 1, 28, 28)) + layer0_input = x.reshape((batch_size, 1, 130, 128)) + # Construct the first convolutional pooling layer: + # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) + # maxpooling reduces this further to (24/2, 24/2) = (12, 12) + # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) + layer0 = LeNetConvPoolLayer( + rng, + input=layer0_input, + #image_shape=(batch_size, 1, 28, 28), + image_shape=(batch_size, 1, 130, 128), + #filter_shape=(nkerns[0], 1, 5, 5), + filter_shape=(nkerns[0], 1, 8, 1), + #poolsize=(2, 2) + poolsize=(4, 1) + ) + + # Construct the second convolutional pooling layer + # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) + # maxpooling reduces this further to (8/2, 8/2) = (4, 4) + # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) + layer1 = LeNetConvPoolLayer( + rng, + input=layer0.output, + #image_shape=(batch_size, nkerns[0], 12, 12), + image_shape=(batch_size, nkerns[0], 30, 128), + #filter_shape=(nkerns[1], nkerns[0], 5, 5), + filter_shape=(nkerns[1], nkerns[0], 8, 1), + #poolsize=(2, 2) + poolsize=(4, 1) + ) + + # the HiddenLayer being fully-connected, it operates on 2D matrices of + # shape (batch_size, num_pixels) (i.e matrix of rasterized images). + # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), + # or (500, 50 * 4 * 4) = (500, 800) with the default values. + layer2_input = layer1.output.flatten(2) + + # construct a fully-connected sigmoidal layer + layer2 = HiddenLayer( + rng, + input=layer2_input, + #n_in=nkerns[1] * 4 * 4, + n_in=nkerns[1] * 5 * 128, + n_out=500, + #n_out=100, + #activation=T.tanh + activation=relu + ) + + # classify the values of the fully-connected sigmoidal layer + layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) + #layer4 = LogisticRegression(input=layer3.output, n_in=50, n_out=10) + + # the cost we minimize during training is the NLL of the model + cost = layer3.negative_log_likelihood(y) + + # create a function to compute the mistakes that are made by the model + test_model = theano.function( + [index], + layer3.errors(y), + givens={ + x: test_set_x[index * batch_size: (index + 1) * batch_size], + y: test_set_y[index * batch_size: (index + 1) * batch_size] + } + ) + + validate_model = theano.function( + [index], + layer3.errors(y), + givens={ + x: valid_set_x[index * batch_size: (index + 1) * batch_size], + y: valid_set_y[index * batch_size: (index + 1) * batch_size] + } + ) + + # Paulo: Set best param for MLP pre-training + f = file('/homes/pchilguano/msc_project/dataset/genre_classification/\ +best_params.pkl', 'rb') + params0, params1, params2, params3 = cPickle.load(f) + f.close() + layer0.W.set_value(params0[0]) + layer0.b.set_value(params0[1]) + layer1.W.set_value(params1[0]) + layer1.b.set_value(params1[1]) + layer2.W.set_value(params2[0]) + layer2.b.set_value(params2[1]) + layer3.W.set_value(params3[0]) + layer3.b.set_value(params3[1]) + + # create a list of all model parameters to be fit by gradient descent + params = layer3.params + layer2.params + layer1.params + layer0.params + #params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params + + # create a list of gradients for all model parameters + grads = T.grad(cost, params) + + # train_model is a function that updates the model parameters by + # SGD Since this model has many parameters, it would be tedious to + # manually create an update rule for each model parameter. We thus + # create the updates list by automatically looping over all + # (params[i], grads[i]) pairs. + updates = [ + (param_i, param_i - learning_rate * grad_i) + for param_i, grad_i in zip(params, grads) + ] + + train_model = theano.function( + [index], + cost, + updates=updates, + givens={ + x: train_set_x[index * batch_size: (index + 1) * batch_size], + y: train_set_y[index * batch_size: (index + 1) * batch_size] + } + ) + # end-snippet-1 + + ############### + # TRAIN MODEL # + ############### + print '... training' + # early-stopping parameters + patience = 1000 # look as this many examples regardless + patience_increase = 2 # wait this much longer when a new best is + # found + improvement_threshold = 0.995 # a relative improvement of this much is + # considered significant + validation_frequency = min(n_train_batches, patience / 2) + # go through this many + # minibatche before checking the network + # on the validation set; in this case we + # check every epoch + + best_validation_loss = numpy.inf + best_iter = 0 + test_score = 0. + start_time = timeit.default_timer() + + epoch = 0 + done_looping = False + + while (epoch < n_epochs) and (not done_looping): + epoch = epoch + 1 + for minibatch_index in xrange(n_train_batches): + + iter = (epoch - 1) * n_train_batches + minibatch_index + + if iter % 100 == 0: + print 'training @ iter = ', iter + cost_ij = train_model(minibatch_index) + + if (iter + 1) % validation_frequency == 0: + + # compute zero-one loss on validation set + validation_losses = [validate_model(i) for i + in xrange(n_valid_batches)] + this_validation_loss = numpy.mean(validation_losses) + print('epoch %i, minibatch %i/%i, validation error %f %%' % + (epoch, minibatch_index + 1, n_train_batches, + this_validation_loss * 100.)) + + # if we got the best validation score until now + if this_validation_loss < best_validation_loss: + + #improve patience if loss improvement is good enough + if this_validation_loss < best_validation_loss * \ + improvement_threshold: + patience = max(patience, iter * patience_increase) + + # save best validation score and iteration number + best_validation_loss = this_validation_loss + best_iter = iter + + # test it on the test set + test_losses = [ + test_model(i) + for i in xrange(n_test_batches) + ] + test_score = numpy.mean(test_losses) + print((' epoch %i, minibatch %i/%i, test error of ' + 'best model %f %%') % + (epoch, minibatch_index + 1, n_train_batches, + test_score * 100.)) + # Paulo: Get best parameters for MLP + best_params0 = [param.get_value().copy() for param in layer0.params] + best_params1 = [param.get_value().copy() for param in layer1.params] + best_params2 = [param.get_value().copy() for param in layer2.params] + best_params3 = [param.get_value().copy() for param in layer3.params] + #best_params4 = [param.get_value().copy() for param in layer4.params] + + if patience <= iter: + done_looping = True + break + + end_time = timeit.default_timer() + print('Optimization complete.') + print('Best validation score of %f %% obtained at iteration %i, ' + 'with test performance %f %%' % + (best_validation_loss * 100., best_iter + 1, test_score * 100.)) + print >> sys.stderr, ('The code for file ' + + os.path.split(__file__)[1] + + ' ran for %.2fm' % ((end_time - start_time) / 60.)) + # Paulo: Save best param for MLP + f = file('/homes/pchilguano/msc_project/dataset/genre_classification/\ +best_params.pkl', 'wb') + cPickle.dump( + (best_params0, best_params1, best_params2, best_params3), + f, + protocol=cPickle.HIGHEST_PROTOCOL + ) + f.close() + +if __name__ == '__main__': + evaluate_lenet5( + learning_rate=0.01, + n_epochs=200, + dataset='/homes/pchilguano/msc_project/dataset/gtzan/features/\ +gtzan_3sec_2.pkl', + nkerns=[32, 32], + batch_size=10 + ) + +def experiment(state, channel): + evaluate_lenet5(state.learning_rate, dataset=state.dataset) +