comparison Code/genre_classification/classification/convolutional_mlp_7digital.py @ 24:68a62ca32441

Organized python scripts
author Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk>
date Sat, 15 Aug 2015 19:16:17 +0100
parents
children
comparison
equal deleted inserted replaced
23:45e6f85d0ba4 24:68a62ca32441
1 """This tutorial introduces the LeNet5 neural network architecture
2 using Theano. LeNet5 is a convolutional neural network, good for
3 classifying images. This tutorial shows how to build the architecture,
4 and comes with all the hyper-parameters you need to reproduce the
5 paper's MNIST results.
6
7
8 This implementation simplifies the model in the following ways:
9
10 - LeNetConvPool doesn't implement location-specific gain and bias parameters
11 - LeNetConvPool doesn't implement pooling by average, it implements pooling
12 by max.
13 - Digit classification is implemented with a logistic regression rather than
14 an RBF network
15 - LeNet5 was not fully-connected convolutions at second layer
16
17 References:
18 - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner:
19 Gradient-Based Learning Applied to Document
20 Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
21 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
22
23 """
24 import os
25 import sys
26 import timeit
27
28 import numpy
29
30 import theano
31 import theano.tensor as T
32 from theano.tensor.signal import downsample
33 from theano.tensor.nnet import conv
34
35 from logistic_sgd import LogisticRegression, load_data
36 from mlp import HiddenLayer
37
38 # Paulo: Additional libraries
39 import cPickle
40 from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
41
42 # Paulo: Rectifier Linear Unit
43 # Source: http://stackoverflow.com/questions/26497564/theano-hiddenlayer-activation-function
44 def relu(x):
45 return T.maximum(0.,x)
46
47 # Paulo: Random Streams
48 srng = RandomStreams()
49
50 class LeNetConvPoolLayer(object):
51 """Pool Layer of a convolutional network """
52
53 def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
54 """
55 Allocate a LeNetConvPoolLayer with shared variable internal parameters.
56
57 :type rng: numpy.random.RandomState
58 :param rng: a random number generator used to initialize weights
59
60 :type input: theano.tensor.dtensor4
61 :param input: symbolic image tensor, of shape image_shape
62
63 :type filter_shape: tuple or list of length 4
64 :param filter_shape: (number of filters, num input feature maps,
65 filter height, filter width)
66
67 :type image_shape: tuple or list of length 4
68 :param image_shape: (batch size, num input feature maps,
69 image height, image width)
70
71 :type poolsize: tuple or list of length 2
72 :param poolsize: the downsampling (pooling) factor (#rows, #cols)
73 """
74
75 assert image_shape[1] == filter_shape[1]
76 self.input = input
77
78 # there are "num input feature maps * filter height * filter width"
79 # inputs to each hidden unit
80 fan_in = numpy.prod(filter_shape[1:])
81 # each unit in the lower layer receives a gradient from:
82 # "num output feature maps * filter height * filter width" /
83 # pooling size
84 fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
85 numpy.prod(poolsize))
86 # initialize weights with random weights
87 W_bound = numpy.sqrt(6. / (fan_in + fan_out))
88 self.W = theano.shared(
89 numpy.asarray(
90 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
91 dtype=theano.config.floatX
92 ),
93 borrow=True
94 )
95
96 # the bias is a 1D tensor -- one bias per output feature map
97 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
98 self.b = theano.shared(value=b_values, borrow=True)
99
100 # convolve input feature maps with filters
101 conv_out = conv.conv2d(
102 input=input,
103 filters=self.W,
104 filter_shape=filter_shape,
105 image_shape=image_shape
106 )
107
108 # downsample each feature map individually, using maxpooling
109 pooled_out = downsample.max_pool_2d(
110 input=conv_out,
111 ds=poolsize,
112 ignore_border=True
113 )
114
115 # Paulo: dropout
116 # Source: https://github.com/Newmu/Theano-Tutorials/blob/master/5_convolutional_net.py
117 retain_prob = 1 - 0.20
118 pooled_out *= srng.binomial(
119 pooled_out.shape,
120 p=retain_prob,
121 dtype=theano.config.floatX)
122 pooled_out /= retain_prob
123
124 # add the bias term. Since the bias is a vector (1D array), we first
125 # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
126 # thus be broadcasted across mini-batches and feature map
127 # width & height
128 #self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
129 self.output = relu(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
130
131 # store parameters of this layer
132 self.params = [self.W, self.b]
133
134 # keep track of model input
135 self.input = input
136
137 '''
138 def evaluate_lenet5(learning_rate=0.01, n_epochs=200,
139 dataset='mnist.pkl.gz',
140 nkerns=[32, 32], batch_size=10):
141 """ Demonstrates lenet on MNIST dataset
142
143 :type learning_rate: float
144 :param learning_rate: learning rate used (factor for the stochastic
145 gradient)
146
147 :type n_epochs: int
148 :param n_epochs: maximal number of epochs to run the optimizer
149
150 :type dataset: string
151 :param dataset: path to the dataset used for training /testing (MNIST here)
152
153 :type nkerns: list of ints
154 :param nkerns: number of kernels on each layer
155 """
156
157 rng = numpy.random.RandomState(23455)
158
159 datasets = load_data(dataset)
160
161 train_set_x, train_set_y = datasets[0]
162 valid_set_x, valid_set_y = datasets[1]
163 test_set_x, test_set_y = datasets[2]
164
165 # compute number of minibatches for training, validation and testing
166 n_train_batches = train_set_x.get_value(borrow=True).shape[0]
167 n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
168 n_test_batches = test_set_x.get_value(borrow=True).shape[0]
169
170 n_train_batches /= batch_size
171 n_valid_batches /= batch_size
172 n_test_batches /= batch_size
173
174 # allocate symbolic variables for the data
175 index = T.lscalar() # index to a [mini]batch
176
177 # start-snippet-1
178 x = T.matrix('x') # the data is presented as rasterized images
179 y = T.ivector('y') # the labels are presented as 1D vector of
180 # [int] labels
181
182 ######################
183 # BUILD ACTUAL MODEL #
184 ######################
185 print '... building the model'
186
187 # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
188 # to a 4D tensor, compatible with our LeNetConvPoolLayer
189 # (28, 28) is the size of MNIST images.
190 #layer0_input = x.reshape((batch_size, 1, 28, 28))
191 layer0_input = x.reshape((batch_size, 1, 130, 128))
192 # Construct the first convolutional pooling layer:
193 # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
194 # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
195 # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
196 layer0 = LeNetConvPoolLayer(
197 rng,
198 input=layer0_input,
199 #image_shape=(batch_size, 1, 28, 28),
200 image_shape=(batch_size, 1, 130, 128),
201 #filter_shape=(nkerns[0], 1, 5, 5),
202 filter_shape=(nkerns[0], 1, 8, 1),
203 #poolsize=(2, 2)
204 poolsize=(4, 1)
205 )
206
207 # Construct the second convolutional pooling layer
208 # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
209 # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
210 # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
211 layer1 = LeNetConvPoolLayer(
212 rng,
213 input=layer0.output,
214 #image_shape=(batch_size, nkerns[0], 12, 12),
215 image_shape=(batch_size, nkerns[0], 30, 128),
216 #filter_shape=(nkerns[1], nkerns[0], 5, 5),
217 filter_shape=(nkerns[1], nkerns[0], 8, 1),
218 #poolsize=(2, 2)
219 poolsize=(4, 1)
220 )
221
222 # the HiddenLayer being fully-connected, it operates on 2D matrices of
223 # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
224 # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
225 # or (500, 50 * 4 * 4) = (500, 800) with the default values.
226 layer2_input = layer1.output.flatten(2)
227
228 # construct a fully-connected sigmoidal layer
229 layer2 = HiddenLayer(
230 rng,
231 input=layer2_input,
232 #n_in=nkerns[1] * 4 * 4,
233 n_in=nkerns[1] * 5 * 128,
234 n_out=500,
235 #n_out=100,
236 #activation=T.tanh
237 activation=relu
238 )
239
240 # classify the values of the fully-connected sigmoidal layer
241 layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
242 #layer4 = LogisticRegression(input=layer3.output, n_in=50, n_out=10)
243
244 # the cost we minimize during training is the NLL of the model
245 cost = layer3.negative_log_likelihood(y)
246
247 # create a function to compute the mistakes that are made by the model
248 test_model = theano.function(
249 [index],
250 layer3.errors(y),
251 givens={
252 x: test_set_x[index * batch_size: (index + 1) * batch_size],
253 y: test_set_y[index * batch_size: (index + 1) * batch_size]
254 }
255 )
256
257 validate_model = theano.function(
258 [index],
259 layer3.errors(y),
260 givens={
261 x: valid_set_x[index * batch_size: (index + 1) * batch_size],
262 y: valid_set_y[index * batch_size: (index + 1) * batch_size]
263 }
264 )
265
266 # Paulo: Set best param for MLP pre-training
267 f = file('/homes/pchilguano/deep_learning/best_params.pkl', 'rb')
268 params0, params1, params2, params3 = cPickle.load(f)
269 f.close()
270 layer0.W.set_value(params0[0])
271 layer0.b.set_value(params0[1])
272 layer1.W.set_value(params1[0])
273 layer1.b.set_value(params1[1])
274 layer2.W.set_value(params2[0])
275 layer2.b.set_value(params2[1])
276 layer3.W.set_value(params3[0])
277 layer3.b.set_value(params3[1])
278
279 # create a list of all model parameters to be fit by gradient descent
280 params = layer3.params + layer2.params + layer1.params + layer0.params
281 #params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
282
283 # create a list of gradients for all model parameters
284 grads = T.grad(cost, params)
285
286 # train_model is a function that updates the model parameters by
287 # SGD Since this model has many parameters, it would be tedious to
288 # manually create an update rule for each model parameter. We thus
289 # create the updates list by automatically looping over all
290 # (params[i], grads[i]) pairs.
291 updates = [
292 (param_i, param_i - learning_rate * grad_i)
293 for param_i, grad_i in zip(params, grads)
294 ]
295
296 train_model = theano.function(
297 [index],
298 cost,
299 updates=updates,
300 givens={
301 x: train_set_x[index * batch_size: (index + 1) * batch_size],
302 y: train_set_y[index * batch_size: (index + 1) * batch_size]
303 }
304 )
305 # end-snippet-1
306
307 ###############
308 # TRAIN MODEL #
309 ###############
310 print '... training'
311 # early-stopping parameters
312 patience = 1000 # look as this many examples regardless
313 patience_increase = 2 # wait this much longer when a new best is
314 # found
315 improvement_threshold = 0.995 # a relative improvement of this much is
316 # considered significant
317 validation_frequency = min(n_train_batches, patience / 2)
318 # go through this many
319 # minibatche before checking the network
320 # on the validation set; in this case we
321 # check every epoch
322
323 best_validation_loss = numpy.inf
324 best_iter = 0
325 test_score = 0.
326 start_time = timeit.default_timer()
327
328 epoch = 0
329 done_looping = False
330
331 while (epoch < n_epochs) and (not done_looping):
332 epoch = epoch + 1
333 for minibatch_index in xrange(n_train_batches):
334
335 iter = (epoch - 1) * n_train_batches + minibatch_index
336
337 if iter % 100 == 0:
338 print 'training @ iter = ', iter
339 cost_ij = train_model(minibatch_index)
340
341 if (iter + 1) % validation_frequency == 0:
342
343 # compute zero-one loss on validation set
344 validation_losses = [validate_model(i) for i
345 in xrange(n_valid_batches)]
346 this_validation_loss = numpy.mean(validation_losses)
347 print('epoch %i, minibatch %i/%i, validation error %f %%' %
348 (epoch, minibatch_index + 1, n_train_batches,
349 this_validation_loss * 100.))
350
351 # if we got the best validation score until now
352 if this_validation_loss < best_validation_loss:
353
354 #improve patience if loss improvement is good enough
355 if this_validation_loss < best_validation_loss * \
356 improvement_threshold:
357 patience = max(patience, iter * patience_increase)
358
359 # save best validation score and iteration number
360 best_validation_loss = this_validation_loss
361 best_iter = iter
362
363 # test it on the test set
364 test_losses = [
365 test_model(i)
366 for i in xrange(n_test_batches)
367 ]
368 test_score = numpy.mean(test_losses)
369 print((' epoch %i, minibatch %i/%i, test error of '
370 'best model %f %%') %
371 (epoch, minibatch_index + 1, n_train_batches,
372 test_score * 100.))
373 # Paulo: Get best parameters for MLP
374 best_params0 = [param.get_value().copy() for param in layer0.params]
375 best_params1 = [param.get_value().copy() for param in layer1.params]
376 best_params2 = [param.get_value().copy() for param in layer2.params]
377 best_params3 = [param.get_value().copy() for param in layer3.params]
378 #best_params4 = [param.get_value().copy() for param in layer4.params]
379
380 if patience <= iter:
381 done_looping = True
382 break
383
384 end_time = timeit.default_timer()
385 print('Optimization complete.')
386 print('Best validation score of %f %% obtained at iteration %i, '
387 'with test performance %f %%' %
388 (best_validation_loss * 100., best_iter + 1, test_score * 100.))
389 print >> sys.stderr, ('The code for file ' +
390 os.path.split(__file__)[1] +
391 ' ran for %.2fm' % ((end_time - start_time) / 60.))
392 # Paulo: Save best param for MLP
393 f = file('/homes/pchilguano/deep_learning/best_params.pkl', 'wb')
394 cPickle.dump((best_params0, best_params1, best_params2, best_params3), f, protocol=cPickle.HIGHEST_PROTOCOL)
395 f.close()
396 '''
397 def genres_lenet5(dataset, nkerns=[32, 32], batch_size=10):
398 """
399 :type dataset: string
400 :param dataset: path to the dataset used for training /testing (MNIST here)
401
402 :type nkerns: list of ints
403 :param nkerns: number of kernels on each layer
404 """
405
406 rng = numpy.random.RandomState(23455)
407
408 f = file(dataset, 'rb')
409 data_x = cPickle.load(f)
410 f.close()
411
412 test_set_x = theano.shared(
413 numpy.asarray(
414 data_x,
415 dtype=theano.config.floatX
416 ),
417 borrow=True
418 )
419
420
421 #datasets = load_data(dataset)
422
423 #train_set_x, train_set_y = datasets[0]
424 #valid_set_x, valid_set_y = datasets[1]
425 #test_set_x, test_set_y = datasets[2]
426
427 # compute number of minibatches for training, validation and testing
428 #n_train_batches = train_set_x.get_value(borrow=True).shape[0]
429 #n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
430 n_test_batches = test_set_x.get_value(borrow=True).shape[0]
431
432 #n_train_batches /= batch_size
433 #n_valid_batches /= batch_size
434 n_test_batches /= batch_size
435
436 # allocate symbolic variables for the data
437 index = T.lscalar() # index to a [mini]batch
438
439 # start-snippet-1
440 x = T.matrix('x') # the data is presented as rasterized images
441 #y = T.ivector('y') # the labels are presented as 1D vector of
442 # [int] labels
443
444 ######################
445 # BUILD ACTUAL MODEL #
446 ######################
447 print '... building the model'
448
449 # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
450 # to a 4D tensor, compatible with our LeNetConvPoolLayer
451 # (28, 28) is the size of MNIST images.
452 layer0_input = x.reshape((batch_size, 1, 130, 128))
453 # Construct the first convolutional pooling layer:
454 # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
455 # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
456 # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
457 layer0 = LeNetConvPoolLayer(
458 rng,
459 input=layer0_input,
460 image_shape=(batch_size, 1, 130, 128),
461 filter_shape=(nkerns[0], 1, 8, 1),
462 poolsize=(4, 1)
463 )
464
465 # Construct the second convolutional pooling layer
466 # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
467 # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
468 # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
469 layer1 = LeNetConvPoolLayer(
470 rng,
471 input=layer0.output,
472 image_shape=(batch_size, nkerns[0], 30, 128),
473 filter_shape=(nkerns[1], nkerns[0], 8, 1),
474 poolsize=(4, 1)
475 )
476
477 # the HiddenLayer being fully-connected, it operates on 2D matrices of
478 # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
479 # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
480 # or (500, 50 * 4 * 4) = (500, 800) with the default values.
481 layer2_input = layer1.output.flatten(2)
482
483 # construct a fully-connected sigmoidal layer
484 layer2 = HiddenLayer(
485 rng,
486 input=layer2_input,
487 n_in=nkerns[1] * 5 * 128,
488 n_out=500,
489 activation=relu
490 )
491
492 # classify the values of the fully-connected sigmoidal layer
493 layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
494
495 # the cost we minimize during training is the NLL of the model
496 # cost = layer3.negative_log_likelihood(y)
497 '''
498 # create a function to compute the mistakes that are made by the model
499 test_model = theano.function(
500 [index],
501 layer3.errors(y),
502 givens={
503 x: test_set_x[index * batch_size: (index + 1) * batch_size],
504 y: test_set_y[index * batch_size: (index + 1) * batch_size]
505 }
506 )
507
508 validate_model = theano.function(
509 [index],
510 layer3.errors(y),
511 givens={
512 x: valid_set_x[index * batch_size: (index + 1) * batch_size],
513 y: valid_set_y[index * batch_size: (index + 1) * batch_size]
514 }
515 )
516 '''
517 # Genre soft classification
518 test_model = theano.function(
519 [index],
520 layer3.p_y_given_x,
521 givens={
522 x: test_set_x[index * batch_size: (index + 1) * batch_size]
523 }
524 )
525
526 # Paulo: Set best paramaters
527 f = file('/homes/pchilguano/msc_project/dataset/genre_classification/\
528 best_params.pkl', 'rb')
529 params0, params1, params2, params3 = cPickle.load(f)
530 f.close()
531 layer0.W.set_value(params0[0])
532 layer0.b.set_value(params0[1])
533 layer1.W.set_value(params1[0])
534 layer1.b.set_value(params1[1])
535 layer2.W.set_value(params2[0])
536 layer2.b.set_value(params2[1])
537 layer3.W.set_value(params3[0])
538 layer3.b.set_value(params3[1])
539
540 # Probabilities
541 print "Computing probabilities..."
542 start_time = timeit.default_timer()
543 genre_prob_batch = [test_model(i).tolist() for i in xrange(n_test_batches)]
544 end_time = timeit.default_timer()
545 print >> sys.stderr, ('The code for file ' +
546 os.path.split(__file__)[1] +
547 ' ran for %.2fm' % ((end_time - start_time) / 60.))
548 genre_prob = [item for sublist in genre_prob_batch for item in sublist]
549
550 filename = '/homes/pchilguano/msc_project/dataset/7digital/lists/\
551 audio_files.txt'
552 with open(filename, 'r') as f:
553 songID = [line.strip().split('/')[-1][:-4] for line in f]
554
555 items = dict(zip(songID, genre_prob))
556 print "Saving songs feature vectors in dictionary..."
557 f = file('/homes/pchilguano/msc_project/dataset/genre_classification/\
558 genre_prob.pkl', 'wb')
559 cPickle.dump(items, f, protocol=cPickle.HIGHEST_PROTOCOL)
560 f.close()
561
562 '''
563 # create a list of all model parameters to be fit by gradient descent
564 params = layer3.params + layer2.params + layer1.params + layer0.params
565
566 # create a list of gradients for all model parameters
567 grads = T.grad(cost, params)
568
569 # train_model is a function that updates the model parameters by
570 # SGD Since this model has many parameters, it would be tedious to
571 # manually create an update rule for each model parameter. We thus
572 # create the updates list by automatically looping over all
573 # (params[i], grads[i]) pairs.
574 updates = [
575 (param_i, param_i - learning_rate * grad_i)
576 for param_i, grad_i in zip(params, grads)
577 ]
578
579 train_model = theano.function(
580 [index],
581 cost,
582 updates=updates,
583 givens={
584 x: train_set_x[index * batch_size: (index + 1) * batch_size],
585 y: train_set_y[index * batch_size: (index + 1) * batch_size]
586 }
587 )
588 # end-snippet-1
589
590 ###############
591 # TRAIN MODEL #
592 ###############
593 print '... training'
594 # early-stopping parameters
595 patience = 1000 # look as this many examples regardless
596 patience_increase = 2 # wait this much longer when a new best is
597 # found
598 improvement_threshold = 0.995 # a relative improvement of this much is
599 # considered significant
600 validation_frequency = min(n_train_batches, patience / 2)
601 # go through this many
602 # minibatche before checking the network
603 # on the validation set; in this case we
604 # check every epoch
605
606 best_validation_loss = numpy.inf
607 best_iter = 0
608 test_score = 0.
609 start_time = timeit.default_timer()
610
611 epoch = 0
612 done_looping = False
613
614 while (epoch < n_epochs) and (not done_looping):
615 epoch = epoch + 1
616 for minibatch_index in xrange(n_train_batches):
617
618 iter = (epoch - 1) * n_train_batches + minibatch_index
619
620 if iter % 100 == 0:
621 print 'training @ iter = ', iter
622 cost_ij = train_model(minibatch_index)
623
624 if (iter + 1) % validation_frequency == 0:
625
626 # compute zero-one loss on validation set
627 validation_losses = [validate_model(i) for i
628 in xrange(n_valid_batches)]
629 this_validation_loss = numpy.mean(validation_losses)
630 print('epoch %i, minibatch %i/%i, validation error %f %%' %
631 (epoch, minibatch_index + 1, n_train_batches,
632 this_validation_loss * 100.))
633
634 # if we got the best validation score until now
635 if this_validation_loss < best_validation_loss:
636
637 #improve patience if loss improvement is good enough
638 if this_validation_loss < best_validation_loss * \
639 improvement_threshold:
640 patience = max(patience, iter * patience_increase)
641
642 # save best validation score and iteration number
643 best_validation_loss = this_validation_loss
644 best_iter = iter
645
646 # test it on the test set
647 test_losses = [
648 test_model(i)
649 for i in xrange(n_test_batches)
650 ]
651 test_score = numpy.mean(test_losses)
652 print((' epoch %i, minibatch %i/%i, test error of '
653 'best model %f %%') %
654 (epoch, minibatch_index + 1, n_train_batches,
655 test_score * 100.))
656 # Paulo: Get best parameters for MLP
657 best_params0 = [param.get_value().copy() for param in layer0.params]
658 best_params1 = [param.get_value().copy() for param in layer1.params]
659 best_params2 = [param.get_value().copy() for param in layer2.params]
660 best_params3 = [param.get_value().copy() for param in layer3.params]
661
662 if patience <= iter:
663 done_looping = True
664 break
665
666 end_time = timeit.default_timer()
667 print('Optimization complete.')
668 print('Best validation score of %f %% obtained at iteration %i, '
669 'with test performance %f %%' %
670 (best_validation_loss * 100., best_iter + 1, test_score * 100.))
671 print >> sys.stderr, ('The code for file ' +
672 os.path.split(__file__)[1] +
673 ' ran for %.2fm' % ((end_time - start_time) / 60.))
674
675 # Paulo: Save best param for MLP
676 f = file('/homes/pchilguano/deep_learning/genre_prob.pkl', 'wb')
677 cPickle.dump((best_params0, best_params1, best_params2, best_params3), f, protocol=cPickle.HIGHEST_PROTOCOL)
678 f.close()
679 '''
680 if __name__ == '__main__':
681 #evaluate_lenet5()
682 genres_lenet5(
683 dataset='/homes/pchilguano/msc_project/dataset/7digital/features/\
684 feats.pkl'
685 )
686
687 #def experiment(state, channel):
688 # evaluate_lenet5(state.learning_rate, dataset=state.dataset)