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Abstract

There is a vast range of Internet resources available today, including songs,
albums, playlists or podcasts, that a user cannot discover if there is not
a tool to filter the items that the user might consider relevant. Several
recommendation techniques has been developed since the internet explosion
to achieve this filtering task. In an attempt to recommend relevant song
to users, we propose an hybrid recommender that considers real-world users
information and high-level representation for audio data. We use a deep
learning technique, convolutional deep neural network, to represent the audio
data in an abstract level. As our main contribution, we investigate a state-
of-the-art technique, estimation of distribution algorithm, to capture the
listening behaviour of an individual from the features of the songs that are
interesting to the user. The designed hybrid music recommender outperform

the predictions compared with a traditional content-based recommender.
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Chapter 1

Introduction

Music has accompanied social activities on our daily lives and has influenced
the shape of the technology landscape that we have today. Portable media
players, mobile device applications or music streaming services enable us
the access to a large volume of digital recorded music. This vast range of
music tracks might include songs that are relevant or not to a listener, being
necessary to develop facilities to bring out appropriate musical pieces to an
user.

Recommender systems can be described as engines that guide the users
to suitable objects from a large number of options in a particular domain
such as books, films or music. The available information of users and items’
attributes is analysed and exploited by the recommender systems to produce
a list of previously unseen items that each user might find enjoyable. De-
pending on the analysed data, the design of a recommender can be focused
on historical ratings given by users or similarities between the attributes of

items that an user already rated.



1.1 Motivation

Due to the available information of relationship between users and items
would be sparse, e.g., most part of the users tend to do not give enough rat-
ings, the accuracy of predictions would decrease. Another disadvantage of
traditional recommender systems, referred as cold-start problem, arises when
a new item cannot be recommended until it gets enough ratings, or, equiva-
lently, when a new user does not have any ratings (Melville and Sindhwani
2010). In order to alleviate the rating sparsity and cold-start problems, there
is the motivation to combine two or more recommendation techniques into
hybrid approaches.

Deep learning is an approach to artificial intelligence for describing raw
data as a nested hierarchy of concepts, with each abstract concept defined
in terms of simpler representations. For example, deep learning can describe
high-level features of an image of a car such as position, colour or brightness
of the object, in terms of contours, which are also represented in terms of
edges. (Bengio, Goodfellow, and Courville 2015

Inspired in natural evolution of species, estimation of distribution algo-
rithms (EDAs) (Larranaga and Lozano 2002) are robust techniques developed
during the last decade for optimisation in Statistics and Machine Learning
fields. EDAs can capture the explicit structure of a population with a prob-

ability distribution estimated from the best individuals of that population.



1.2 Aims

We aim to design and implement a hybrid music recommender to mitigate
the cold-start problem in a content-based recommendation strategy. The ar-
chitecture of our hybrid recommender approach combines two fundamental
tasks (Recommender Systems|2012)): user modelling and information filter-
ing. Both of these techniques require user-item data to learn user’s interest
and select items based on their content description, respectively.

In this project, user-item information is obtained from the Taste Pro-
file dataset, which is a complementary subset of the Million Song Dataset
(Bertin-Mahieux et al. 2011) and provides real world listeners activity, i.e.,
play counts of a song. On the other hand, the items to consolidate the music
library are obtained by using the unique identifier of each song to fetch its
audio data from 7digital.

A convolutional deep neural network (CDNN), which is a deep learning
model, is employed to describe the time-frequency content of each audio clip
with a n-dimensional vector, whose dimensions represent the probability of
a clip to belong to an specific music genre. In this project, we bound the
number of music genres to 10.

As a primary contribution of this project, estimation of distribution al-
gorithms (EDAs) are investigated to model user profiles in terms of proba-
bilities of music genres preferences. The algorithms use play count and the
content vector of each song in the user’s collection to optimise the profile.
In addition, each dimension in the content vector is treated as a discrete

and continuous variable, for evaluation purposes. To our knowledge, this is



the first approach that uses a continuous EDA for user profile modelling in
recommender systems.

Each user profile then is compared with the vector representation of an
audio clip to compute the similarity value between them. Recommendations
for an user are built up by selecting the clips with highest similarity values.

The evaluation of our hybrid music recommender approach is assessed
by comparing the results obtained with a traditional content-based recom-

mender.

1.3 Thesis outline

The rest of the report is organised as follows: Chapter [2] provides an overview
in recommender systems. Recommendation process, associated challenges,
and related work based on state-of-the-art techniques are discussed. In Chap-
ter[3] we present our proposed hybrid recommendation approach and describe
the stages and algorithms in detail. The experiments and evaluation proto-
cols are to assess the performance of the hybrid recommender presented in
Chapter [} In Chapter [5], we proceed to discuss and analyse the results from
the conducted experiments to evaluate the proposed hybrid music recom-
mender. In Chapter [6] we present the conclusions and some thoughts for

further research.



Chapter 2

Background

Recommender systems create opportunities and challenges for industry to
understand consumption behaviour of users. In particular, for music indus-
try, the development of recommender systems could improve digital music
sales (Ringen 2015), and also, it could assist the listeners to discover new
music through their habits (Hypebot.com 2015). However, when there is no
priori information of a new introduced item in a recommender system, known
as the cold-start problem, popular songs could be favoured in recommenda-
tion process instead of items in the long tail, i.e., songs that do not have
enough ratings. Usually, content-based recommender systems are used to
solve the cold-start problem because similarities between items are based on
the content without regarding the ratings (Park and Tuzhilin 2008). Another
solution to address the cold-start problem is to combine recommendation
techniques to boost the strengths of each technique in an hybrid architec-
ture. (Melville and Sindhwani 2010))

In this chapter, we present the importance of online social networks and



music services platforms for retrieving user-item information, in conjunction
with related work on music recommender systems. Subsequently, a novel
approach of an hybrid recommendation model based on estimation of distri-

bution algorithms (EDAs) is introduced and examined.

2.1 Online Social Networks

Social network sites (boyd and Ellison 2007) are defined as:

“Web-based services that allow individuals to (1) construct a pub-
lic or semi-public profile within a bounded system, (2) articulate
a list of other users with whom they share a connection, and (3)
view and traverse their list of connections and those made by

others within the system.”

During the last decade, online social networks, which are also identified as
social media platforms, have become the outstanding technologies for retriev-
ing and exchanging multimedia information (Putzke et al. 2014)). Facebook,
Twitter or YouTube, have enabled users to produce and share content on the
internet, specially, customers around the world are renovating business mod-
els by sharing reviews and comments of products directly to companies. This
produced content provides opportunities for research to track consumer’s be-
haviour. (Smith 2009)

In particular, Last.me] is an online radio station that also have the facil-
ities of a social media platform, where a user profile is built up by collecting

the music tracks listened on multimedia players through a indexing process

thttp:/ /www.last.fm/



called scrobbling. This profile may expose music consumption and listening

behaviour. (Putzke et al. [2014))

2.2 Music services platforms

The Echo Nestﬂ was a music intelligence company that offered solutions for
music discovery and personalisation, dynamic curated sources, audio finger-
printing and interactive music applications. In 2014, The Echo Nest was
acquired by Spotifyf}, which is a commercial music streaming service, where
a user can browse and listen music tracks sorted by artists, albums, genres
or playlists.

However, The Echo Nest API is still active for developer community and
offers the access to artists, songs, taste profiles and playlists data. Particu-
larly, The Echo Nest API is able to retrieve information limited to a particular
music tracks catalogue such as 7digital]

Both The Echo Nest and 7digital require to sign up for a free account
to get unique keys for OAuthP| authentication in order to retrieve desired
information through their respective APIs. As well, free account has limited
number of calls, in the case of Echo Nest is limited to 20 request per minute
and in the case of 7digital is limited to 4000 request per day.

In this project, we use a The Echo Nest account to get music tracks iden-
tifiers for each song in the user-item dataset and we use a 7digital developer

account to fetch audio for each music track catalogue identifier. The user-

2http://developer.echonest.com/
3https://www.spotify.com/
4http://developer.7digital.com/
Shttp://oauth.net/



item dataset consist of user - song - play count triplets of the Taste Profild’|
subset which contains real world listeners activity provided among Fcho Nest

partners including Last.fm.

2.3 Recommender Systems

Recommender systems are software or technical facilities to provide items
suggestions or predict customer preferences by using prior user information.
These systems play an important role in commercial applications to increase
sales and convey user satisfaction. In general, recommender systems can be
categorised in two major groups: collaborative filtering and content-based
filtering (Melville and Sindhwani 2010)).

Celma (2008) considers also another methods for music recommendation

such as demographic filtering and named context-based.

2.3.1 Collaborative filtering

In collaborative filtering (CF) (Yao et al. |2015)), a mxn rating matrix (Fig-

ure represents the relationships between m users and n items.
Recommendations are based on the computed similarities between rows

(for users) or columns (for items), hence, CF can be further subdivided in

the following neighbourhood models (Hu, Volinsky, and Koren 2008)):

e User based collaborative filtering, produce a recommendation of a

previously unseen item based on similarity between users (Figure [2.2)).

Shttp:/ /labrosa.ee.columbia.edu/millionsong/tasteprofile
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e Item based collaborative filtering, produce a recommendation by com-

paring the similarities between a previously unseen item and the user’s

items (Figure :
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Similarities between a pair of users a,u are usually computed with Pearson

correlation metric (Sarwar et al. 2001)), given by Equation ({2.1)):

Ziej(ra,i - fa)(ru,i - fu)
\/Ziel(ra,i - 77G)Z\/z:iel(ru,i —Ty)?

sim(a,u) = (2.1)

where I is the set of items rated by both users, r,; is the rating given to
item ¢ by user u, and 7, is the mean rating given by user u. Equivalently,
for similarities between a pair of items 4,5, the correlation is given by Equa-

tion ([2.2)):

sim(i,f) = D e (Tui — Ti) (ruj — 75) (2.2)

N \/ZueU(ruvi - fi)Q\/ZueU(r%j - 7jj)2

where U is the set of users who have rated both items, r, ; is the rating given
to item ¢ by user u, and 7; is the mean rating given to item 1.

The strength of CF is that the recommendation process is independent of
the item features (Burke 2002). On the other hand, CF would not be suitable
technique when the user-item matrix is sparse. Moreover, CF considers only
the most rated items, therefore, ignores the items in the long tail, and it is

unable to handle the cold start problem. (Dai et al. 2014)

The cold start problem

Recommendation process in CF might be difficult either for a user or an item

with few ratings. (Burke [2002)

10



The long tail phenomenon

The long tail items according to Yin et al. (2012) are referred to products
with a low volume of sales but they can be more profitable than the popular

items if they are recommended to the right consumers.

2.3.2 Content-based filtering

Content based (CB) filtering is based on the analysis of the features that
describe the items. The recommendation component consists in matching
up the attributes of the items that a user has already rated, usually referred
as the user profile (Lops, Gemmis, and Semeraro 2011, against the attributes
of a previously unseen products to produce a list of top-N recommendations.

Figure [2.4] shows the architecture of content-based recommendation process.

(o]
} V 1
User profile & - 0~
contextual prameters \
v
tem | score ]
1 09
. 2 1
3 | 03
v .
Recommendation Recommendation
Product features component list

Figure 2.4: Content-based filtering process (Blog.seagatesoft.com [2015))

One of the strengths of CB filtering is that recommendation process is
entirely based on the attributes of the items, thus, the recommendations pro-
duced for each user is independent from the other users information. Also,

a CB recommender allows to recommend items that do not have any rat-

11



ings, therefore, they can diminish the effects of cold-start problem. (Lops,

Gemmis, and Semeraro 2011))

Limitations of CB filtering

One disadvantage of CB filtering is that personal reviews are not considered
in the recommendation process, because this technique is limited to explicit
representation of items (Celma 2008). Moreover, some representations limit
the description to certain aspects only (Lops, Gemmis, and Semeraro [2011)).

Another limitation of CB might be the collection of external data due to
restricted access, e.g., the Million Song Dataset (Bertin-Mahieux et al. 2011)
does not provide audio data due to copyright restrictiond’] and some preview
clips are not available in the 7digital UK music catalogue.

In our project, a CB recommender is used as the baseline to show a
improved performance in music recommendation. Please refer to Section

for more detail.

2.3.3 Item Representation

Items require an accurate description to achieve upstanding results for rec-
ommending items to users (Celma 2008). In majority of the content-based
filtering systems, item attributes are textual features extracted from web
resources. (Lops, Gemmis, and Semeraro 2011))

In our approach, we describe the songs in terms of n-dimensional vectors.

Each dimension in the vector represent the probability of the song to belong

"http://labrosa.ee.columbia.edu/millionsong/pages /can-i-contact-you-privately-get-
audio

12



to a music genre. The probalitity estimation is obtained from a music clas-
sifier implemented with a deep learning technique. The song representation

process is illustrated in section [3.3.]]

2.3.4 User Modelling

“User modeling [sic] is a discipline that deals with both how information
about the user can be acquired and used by an automated system.” (Recom-
mender Systems|2012))

Modelling a user profile consists of designing a structure for recording the
interests which describe a user. There are several techniques for modelling
an user profiles: vector, connexion, ontology and multidimensional represen-
tation. (Bouneffouf 2013

In our project, we model each user profile through EDAs by minimising
a fitness function. The parameters of the fitness function are the rating and
similarity values of each song that a user has listened. The user profile is also
represented in a n-dimensional vector of probabilities of music genres. This

process is illustrated in section [3.3.2]

2.3.5 Hybrid recommender approaches

An hybrid recommender system is developed through the combination of
the recommendation techniques mentioned in the previous sections. Usu-
ally, hybrid approaches boost the advantages of CF by considering the user’s
feedback and the advantages of CB by taking into count the item attributes.

According to Burke (2002)), there are the following combination methods

13



to accomplish hybridisation:

e Weighted method, where a single item recommendation is computed
as a linear combination of the recommendation value from each tech-
nique involved. The weight assigned to each recommender can be ad-

justed by considering additional feedback from the user.

e Switching method, where the hybrid system uses a criteria depend-
ing on the input data to switch between recommendation techniques

implemented in the system.

e Mixed method, where recommendations from several different types

of recommender are presented simultaneously.

e Feature combination method, where CF results are treated as addi-

tional attributes of a CB filtering recommender.

e Cascade method, where one recommender refines the coarse recom-
mendations set given by the first recommender. This method is more
efficient than the weighted method, because cascade implementation

do not process every item at each stage.

e Feature augmentation method, where the rating of an item from one
recommender is used as an input feature of another recommendation

technique.

e Meta-level method, where a model generated for user’s interest rep-
resentation using one recommendation technique is used as the input

of another recommender system. The advantage of this method is the

14



performance of the second recommender that uses the compressed rep-

resentation instead of sparse raw data.

The hybrid music recommender approach in this project can be consid-
ered as implementation of feature augmentation method and a meta-level
method. The general model of our hybrid recommender is explained in de-

tail in Section [3.3l

2.4 Music Information Retrieval

Music Information Retrieval (MIR) (Casey et al. [2008)) is a field of research
for better human understanding of music data in an effort to reduce the
semantic gap (Celma, Herrera, and Serra [2006)) between high-level musical
information and low-level audio data. Applications of MIR include artist

identification, genre classification and music recommender systems (Weston

et al. 2012; Yoshii et al. [2008)).

2.4.1 Genre classification

Music classification is one of the main tasks in MIR for clustering audio tracks
based on similarities between features of pieces of music. Automatic musi-
cal genre classification approach proposed by Tzanetakis and Cook (2002),
which uses GTZAN genre datasetﬂ has been widely used in the past decade.
The GTZAN dataset consists of a total of 1,000 clips, corresponding to 100

examples for each of the 10 music genres: blues, classical, country, disco,

8http://marsyas.info/downloads/datasets.html
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hiphop, jazz, metal, pop, reggae and rock. The total duration of each clip is
30 seconds.
Nonetheless, the GTZAN dataset has inaccuracies (Sturm 2012)), it still

provides an useful baseline to compare genre classifiers.

2.4.2 Music recommender systems
Collaborative retrieval music recommender

Weston et al. (2012) proposed a latent collaborative retrieval algorithm us-
ing the Last.fm Dataset - 1K usehﬂ dataset. For each (artist, song) tuplet
in the dataset, they computed the audio data using 39-dimensional vector
corresponding to 13 Mel Frequency Cepstral Coefficients (MFCCs),and the
first and the second derivatives. The vectors obtained are used to build up
a dictionary using the K-means algorithm. Each audio frame is represented
with a vector that contains the number of occurrences of a dictionary vector
in the frame. The collaborative retrieval algorithm present outperforming
results compared with the Singular Value Decomposition (SVD) and Non-
negative Matrix Factorization (NMF) methods used on collaborative filtering

recommendation tasks.

Hybrid music recommender

Yoshii et al. (2008) proposed a hybrid recommender system considering rating
scores collected from Amazon.co.jp and acoustic features derived from the

signals of musical pieces corresponding to Japanese CD singles that were

Yhttp://www.dtic.upf.edu/ocelma/MusicRecommendationDataset /lastfm-1K.html

16



ranked in weekly top-20 from April 2000 to December 2005. Acoustic features
for each piece are represented as a bag-of-timbres, i.e., a set of weights of
polyphonic timbres, equivalent to a 13-dimensional MFCC representation.
Bags of timbres are computed with a Gaussian Mixture Model, considering
the same combination of Gaussians for all the pieces.

A three-way aspect model (see Figure is used to decompose the joint
probability of users U, pieces M and features T into a set of latent genre
variables Z. It is assumed that user u stochastically choose a genre 2z according
to their preferences and then the genre z stochastically generates a piece of

music m and an acoustic feature t.

p(u)

System recommends
piece m with high p(n|u)

Latent variable
(conceptual genre)

piece

Figure 2.5: Three-way aspect model (Yoshii et al. 2008)

The results of the comparative experiments revealed that three-way as-
pect hybrid method outperformed the CF and CB recommendation tech-
niques in terms of accuracy considering |T'| = 64 features and |Z| = 10 latent

variables.

17



2.5 Deep Learning

High-level features that help us make sense of an observed data., e.g. genre,
mood or release time in a music library could be difficult to compute. Deep
learning algorithms allows us to build complex concepts out of simpler con-
cepts (Bengio, Goodfellow, and Courville 2015). Deep learning can solve
the difficulty of representing high-level features, e.g., perceived genre in a
piece of music, by expressing them in terms of low-level signal features, e.g.
spectrum, frequency or pitch.

In MIR, deep learning methods capture the attention of researchers for

the following reasons (Kereliuk, Sturm, and Larsen 2015)):
e Hierarchical representations of structures in data.
e Efficient feature learning and classification algorithms.

e Open and publicly available implementations, e.g., Theano (Bastien et

al. 2012} Bergstra et al. 2010) library for Python.

These advantages of deep learning methods enable us to learn abstractions
from music low-level content in order to reduce the semantic gap (Celma,
Herrera, and Serra 2006) in MIR. Additionally, feature extraction does not
require significant domain knowledge compared to hand-crafted engineering.

Nonetheless, deep learning implementations require a lot of data.

2.5.1 Deep Neural Networks

A deep neural network (DNN) (Hinton et al. 2012) is defined as a feed-

forward artificial neural network (ANN), or multi-layer perceptron (MLP),

18



with more than one layer of hidden units between the input and the output

layer (see Figure [2.6)).

M= CLE
[ b = 1
I8 Q!\?.f-‘-
.lr'-'.FJ].-:,‘IU
[ ES=TN-]

Figure 2.6: Schematic representation of a deep neural network (Brown 2014])

Each hidden unit j maps its total input from the layer below z;, given
by Equation (2.3))

where b; is the bias of unit j, ¢ is an index over units in the layer below,
and w;; is the weight on a connection to unit j from unit ¢ in the layer
below, to a scalar value y; that is directed to the layer above. The activation
function of hidden units can be hyperbolic tangent, logistic or rectifier linear
activation function. For classification, output unit j converts its total input
x; into a class probability p; by using the softmaz nonlinearity, given by

Equation ([2.4]
exp T;

S e (2.4)

p; =

where £ is the number of classes.

19



Music Feature Learning

Sigtia and Dixon (2014]) examined and compared DNNs to discover features
from the GTZAN dataset and the ISMIR 2004 genre classification dataset™]
using rectifier linear units (ReLUs) and dropout regularisation. The ReLU
activation function is defined as maz(x,0). ReLUs provides better conver-
gence without pre-training. Dropout regularisation reduces the problem of
overfitting.

First, the GTZAN dataset was divided into four 50/25/25 train, valida-
tion, test parts. For each audio clip of the dataset, they calculated the Fast
Fourier Transform (FFT) on frames of length 1,024 samples (22,050 kHz
sampling rate) with a window overlap of 50%. Next, they used the magni-
tude of each FFT frame resulting in a 513 dimensional vector. And then,
each feature dimension is normalised to have zero mean and unit standard
deviation.

For the deep neural network, the 500 hidden units were trained with
stochastic gradient descent (SGD) with a learning rate of 0.01, a patience of
10 and a dropout rate of 0.25.

The system classifies the GTZAN data with an accuracy of 83+1.1%, a

value of the same order of results obtained with hand-crafted features.

2.5.2 Convolutional Deep Neural Networks

Inspired in the behaviour of animal visual processing system (Deeplearn-

ing.net [2015)), a convolutional deep neural network (CDNN) (Bengio, Good-

Ohttp://ismir2004.ismir.net /genre_contest/

20



fellow, and Courville [2015; Ufldl.stanford.edu 2015) is a type of MLP that
uses convolution operation instead of matrix multiplication for processing
data that has grid-like topology. CDNNs are designed to recognize visual
patterns directly from pixel images. In general, the architecture of a CDNN

is based on:

e Sparse connectivity: the inputs of hidden units in an upper layer m

are from a subset of units in a lower layer m—1.

e Shared weights: each hidden unit in a layer share the same weight
vector and bias. The layer with this parametrisation form a feature

map.

e Convolutional layers: A feature map is obtained by convolution
of the input image with a linear filter, adding a bias term and then
applying a non-linear function. Each convolutional (hidden) layer is

composed of multiple feature maps.

e Max-pooling: is a non-linear down-sampling to divide the input im-
age into a set of non-overlapping rectangles and, for each rectangle, the

maximum value is returned.

LeNet-5 (LeCun [2015]) is one model of CDNN designed for recognition of
handwritten and machine-printed characters. In Figure[2.7] the LeNet model
is illustrated. The lower-layers are composed of convolution and max-pooling
layers and the upper-layer is a fully-connected MLP. The input to MLP is

the set of all features maps at the layer below.
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Figure 2.7: Convolutional deep neural network LeNet model (Deeplearn-
ing.net 2015))

Deep content-based music recommendation

Oord, Dieleman, and Schrauwen (2013) proposed to use a latent factor model
for CB recommendation and the implementation of a CDNN to predict the
latent factors from music audio. To obtain 50-dimension latent vectors, they
used a weighted matrix factorisation (WMF') algorithm on the Taste Profile
Subset. Also, they retrieved audio clips for over 99% of the songs in the
dataset from 7digital.com.

To train the CDNN, the latent vectors obtained through the WMF are
used as ground truth. The input of the CDNN is a log-compressed mel-
spectrogram with 128 components computed from windows of 1,024 samples
and a hop size of 512 samples (sampling rate of 22,050 Hz) for each audio
clip. The duration of audio clips is limited to 3 seconds.

They used 10-fold cross validation and obtained an average area under
the ROC curve (AUC) of 0.86703 for prediction based on the latent factor

vectors, outperforming the bag-of-timbres approach.
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2.6 Estimation of Distribution Algorithms

Inspired in natural selection of species, an estimation of distribution algo-
rithm (EDA) (Pelikan, Hauschild, and Lobo 2015; Ding, Ding, and Peng
2015, Santana et al. 2010) is an optimisation technique that estimates a
probabilistic model from a sample of promising individuals, which is used to
generate a new population and leading to an optimal solution of an objective
function, called the fitness function, until a termination criteria, e.g., max-
imisation, minimisation, maximum number of generations, is satisfied. These
algorithms were applied to solve complex problems such as load balancing
for mobile networks (Hejazi and Stapleton 2015) or software reliability pre-
diction (Jin and Jin [2014)). In Figure we show the general flowchart of
an EDA.

| Generate initial population

¥

| Evaluate each individual of the population

Select some promising individuals and estimate the
joint probability distribution

v

Generate offspring by sampling that probability
distribution and evaluate them

¥

Replace old population according to replacement
strategy with new offspring

Figure 2.8: Flowchart of estimation of distribution algorithm (Ding, Ding,
and Peng 2015)

According to Pelikan, Hauschild, and Lobo (2015)), the main components

of an EDA are a selection operator, a class of probabilistic models for mod-
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elling and sampling, and a replacement operator for combining the old pop-
ulation with the offspring. Also, regarding the types of distributions that
an EDA are able to capture (Pelikan, Hauschild, and Lobo 2015) can be

categorised in four broad groups:

e Discrete variables EDAs, where candidate solutions are represented

by fixed-length strings of a finite cardinality.

e Permutation EDAs, where candidate solutions are represented by

permutations over a given set of elements.

e Real-valued vectors (continuous) EDAs, where candidate solu-
tions are mapped from real-valued variables into a discrete domain or

the probabilistic model defined on real-valued variables are considered.
e Genetic programming EDAs.

The advantages of using EDAs include the discovery of problem-specific
features or reducing the memory requirements. However, it is time consuming
to build explicit probabilistic models. (ibid.)

In our project, we investigate permutation EDAs and continuous EDAs

for user profile modelling.

2.6.1 A Hybrid Recommendation Model Based on EDA

Liang et al. (2014) exploited a permutation EDA to model user profiles in an

hybrid model for movie recommendation using the MovieLens 1M dataset']

Uhttp://grouplens.org/datasets/movielens/
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A movie, i, is described using a vector, t; = {(ky,w1), ..., (k,, w,)}, where
the keywords k,, and weights w,, are calculated with term frequency-inverse
document frequency (TF-IDF) technique. A user is initially represented by
aset, Sy = {(t1,7u1)s- - (ti, 7ui)|Tui > Tu}, where, r,; is the rating of the
movie ¢ given by user u, and 7, is a threshold. The keywords in every S, set
are embedded in a new set, D,,.

The goal is to learn the user profile, profile, = {(ki,w1), ..., (kn,ws)},

by minimisation of the fitness function, defined by Equation ([2.5))

fitness(profile,) = Z log(ry; X sim(profile,,t;)) (2.5)

1€Sy

where sim(profile,,t;) is computed by the cosine similarity coefficient, de-

fined by Equation ([2.6|)

~profile, - 1;
[profileu|| < ||t

sim(profile,,t;) = cos(profile,,t;) (2.6)

The pseudocode of EDA implemented by Liang et al. (2014) is delineated
by Algorithm [1| where MAXGEN is the maximum number of generations.
To recommend a new movie, j, to a user, the similarity between the user

profile, u;, and the movie vector, ¢;, is calculated using Pearson correlation

coefficient, defined by Equation (2.7)):

ZCEIiﬂIj (wi’c - wl)(wj’c - /II]])

)= = =
\/ZCEIuij (wivc - wi>2\/2celuﬂlj (wjzc - w.7>2

sim(u;, t (2.7)

where, ¢ € I; N I; are the keywords in common between the user profile and
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Algorithm 1 Calculate profile,

Require: set D, weights w,, ;
Require: population size N, MAXGEN
Random selection of keywords k,, from D,
Assign a weight w,,; to each k, to build a set K, of size N
Assign a probability ¢,; = 1/N to each (k,, wy,;)
Generate initial population of profile, by Monte Carlo method
while generation < MAXGEN do
Compute each fitness(profile,)
Rank individuals by their fitness value
Select top M < N individuals
Update ¢, ; by counting the occurrences of (k,,, wy, ;) in the M individuals
profiles
Generate profile, by random sampling according to updated ¢, ;
end while
return profile,

the new movie vector, w; . and w; . are the weights of keyword c in the user
profile and movie vector, w; is the mean weight of user profile and w; is the
mean weight of movie vector.

In our approach, we use the algorithm proposed by Liang et al. (2014)
to model user profiles but considering probability values of music genres
instead of weight values of keywords. The adapted algorithm is explained in

subsection B.3.2

2.6.2 Continuous Univariate Marginal Distribution Al-
gorithm

Gallagher et al. (2007) presented the continuous univariate marginal distri-
bution algorithm (UM DAS) as an extension of a discrete variable EDA.

The general pseudocode of the UM DAY is delineated in Algorithm , where
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x; € X represent the ¢ parameter of & individual solution.

Algorithm 2 Framework for UM DAY

Require: population size M
Require: selection parameter 7
t<+0
Generate M individuals at random
while ¢ < stopping criteria do
Msel —~ M- T
Select M., individuals
Mse ]
Mg < Mlsel Zj:ll x;
MSE ]
Uz‘Q,t A Msﬁll_l Zj:ll(xg - ,ui,t)2
pe(xi| it Uit) — —\/ﬁm’t eXp(_%<xzo—-iiz,t)2>
Sample M individuals from py(z;|pis, 07;)
t—t+1
end while

To our knowledge, our hybrid recommender design is the first work to con-
sider a continuous EDA for user profile modelling in a recommender system.

The implementation of the continuous EDA is explained in subsection [3.3.2]

2.7 Summary

In this chapter, previous work on recommender systems has been reviewed
and novelty techniques to representing acoustical features and to model user
profiles has been presented. The next steps are to collect the dataset by
crawling online social information, to extract the acoustical features of a col-
lection of songs to represent them as n-dimensional vectors, to model the
user profiles by using EDAs, and therefore, to return a list of song recom-

mendations.
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Chapter 3

Methodology

The methodology used to develop our hybrid music recommender consists
of four main stages. First, the collection of real world user-item data corre-
sponding to the play counts of specific songs and the fetching of audio clips
of the unique identified songs in the dataset. Secondly, the implementation
of the CDNN to represent the audio clips in terms of music genre proba-
bilities as n-dimensional vectors. Next, permutation EDA and a continuous
EDA are investigated to model user profiles based on the rated songs above
a threshold. Finally, the process of top-N recommendation for the baseline
and the hybrid recommender is described.

Every stage of our hybrid recommender is entirely developed in Python
2.77 although, they are implemented in different platforms, e.g., OS X
(v10.10.4) for the most part of the implementation, Ubuntu (14.04 LTS in-
stalled on VirtualBox 5.0.0) for intermediate time-frequency representation

and CentOS (Linux release 7.1.1503) for the data preprocessing and CDNN

https:/ /www.python.org/download /releases/2.7/
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implementation.

3.1 Data collection

The Million Song Dataset (Bertin-Mahieux et al. 2011)) is a collection of audio
features and metadata for a million contemporary popular music tracks which
provides ground truth for evaluation research in MIR. This collection is also
complemented by the Taste Profie subset which provides 48,373,586 triplets,
each of them consist of anonymised user ID, Echo Nest song ID and play
count. We choose this dataset because it is publicly available data and it

contains enough data for user modelling and recommender evaluation.

3.1.1 Taste Profile subset cleaning

Due to potential mismatches? between song ID and track ID on the Echo
Nest database, it is required to filter out the wrong matches in the Taste

Profile subset. The cleaning process is illustrated in Figure

SN
e A
» thunk contain N " y/Cleaned Taste
Taste Profile *| | Read chunk songiDs? No—» Append triplets 7 Profile subset
-_Subsst 7 x
Yes
Y
[y Discard triplets
SongID- » |Read songlDs| —* songlDs set with mismatch
TrackiD songlD

Figure 3.1: Diagram of the cleaning process of the Taste Profile subset

A script is implemented to discard the triplets that contain the song

identifiers from the mismatches text file. First, we load the file to read each

2http://labrosa.ee.columbia.edu/millionsong/blog /12-2-12-fixing-matching-errors
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line of it to obtain song identifier. The identifiers are stored as elements of a
set object to construct a collection of unique elements. Next, due to the size
of the Taste Profile subset (about 3 GB, uncompressed), we load the dataset
by chunks of 20,000 triplets in a pandaﬂ dataframe to clean each chunk by
discarding the triplets that contains the song identifiers in the set object of
the previous step. The cleaning process takes around 2.47 minutes and we
obtain 45,795,100 triplets.

In addition to the cleaning process, we reduce significantly the size of the
dataset for experimental purposes. We only consider users with more than
1,000 played songs and select the identifiers of 1,500 most played songs. This
additional process takes around 3.23 minutes and we obtain 65,327 triplets.

The triplets are stored in a cPickld] data stream (2.8 MB).

3.1.2 Fetching audio data

First, for each element of the list of 1,500 songs identifiers obtained in the
previous step is used to retrieve the associated Echo Nest track ID through a
script using the get_tracks method from the Pyechonest| package which allow
us to acquire track ID and preview URL for each song ID through Echo Nest
API. The reason behind this is 7digital API uses Echo Nest track ID instead
of song ID to retrieve any data from its catalogue. If the track information of
a song is not available, the script skips to retrieve the Echo Nest information
of the next song ID. At this point, it is useful to check if the provided 7digital

API keys, a preview URL, and the country parameter, e.g., "GB’ to access to

3http://pandas.pydata.org/
4https://docs.python.org/2/library /pickle. html#module-cPickle
Shttp://echonest.github.io/pyechonest/
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UK catalogue, work in the OAuth 1.0 Signature Reference Implementation]]

Next, for each preview URL, we can create a GET request using python-
oauthQIZ] package, because it allows us to assign the nonce, the timestamp,
the signature method and the country parameters. The request is converted
to a URL to be opened with urlopen function from the urllib2f] module, to
download a MP3 file (44.1 kHz, 128 kbps, stereo) of 30 to 60 seconds of
duration in a song repository.

Considering the Echo Nest API and 7digital API limited number of re-
quests (see Section , the process of fetching data from 1,500 song IDs
takes at least 8 hours, resulting in a total of 640 MP3 files.

Additionally, the script accumulates the Echo Nest song identifier, track
ID, artist name, song title and the 7digital preview audio URL for each
downloaded track in a text file only if the audio clip is available for download.
The generated text file is used for the preprocessing of the cleaned taste
profile dataset in subsection [3.2.1] The flowchart of the script is shown in

Figure |3.2

3.1.3 Intermediate time-frequency representation for

audio signals

Intermediate audio representation instead of waveform (time-domain) rep-
resentation is required to feed a CDNN according to Oord, Dieleman, and

Schrauwen (2013). The flowchart to obtain the time-frequency representa-

Shttp://7digital.github.io/oauth-reference-page/
"https://github.com /jasonrubenstein /python_oauth2
8https://docs.python.org/2/library /urllib2.html
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Figure 3.2: Flowchart of the fetching audio process

tion from raw audio content of the song repository assembled in the previous

section is shown in Figure [3.3]

Generate list of
absalute paths

Randomise list

3

List of audio ;

flepatns [

Y

Load audio

waveform

Calculate
specirogram

Filename and
specirogram
(HDF5)

Figure 3.3: Flowchart for time-frequency representation process

First, a list of absolute paths corresponding to the songs in the reposi-

tory is generated. The sequence of paths in the list is modified by random

shuffling. This new sequence of absolute paths is saved in a text file.
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Second, for every path in the text file of randomised absolute paths, a
fragment equivalent to 3 seconds of the associated audio clip is loaded at
a sampling rate of 22,050 Hz and converted to mono channel. For every
fragment, a mel-scaled power spectrogram with 128 bands is computed from
windows of 1,024 samples with a hop size of 512 samples, resulting in a
spectrogram of 130 frames with 128 components. Hence, the spectrogram
is converted to logarithmic scale in dB using peak power as reference. The
functions load, feature.melspectrogram and logamplitude, correspondingly to
load an audio clip, spectrogram computation and logarithmic conversion,
from the LibROSAH package are used.

To handle audio with LibROSA functions, it is recommended to use the
Samplerateﬂ package for efficient resampling. In our project, we consid-
ered to use the SOXE| cross-platform without success due to operating sys-
tem restrictions. Alternatively, we use the FFmpegE| cross-platform and
libmpS’lameOE packages for efficient resampling.

Finally, we store the absolute path and the log-mel-spectrogram values
of the 640 songs in a HDF@ data file.

In the particular case for the time-frequency representation of each audio
clip in the GTZAN dataset, we generate a list of the genre associated to
each audio fragment that represent the target values (ground truth). This

procedure for the GTZAN dataset is repeated for 9 times, considering the

9https://bmcfee.github.io/librosa/index.html
Ohttps://pypi.python.org/pypi/scikits.samplerate/
Hhttp://sox.sourceforge.net/

2https:/ /www.ffmpeg.org/

13http:/ /packages.ubuntu.com/precise/libmp3lame0
Mhttps:/ /www.hdfgroup.org/HDF5/
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rest of 3-seconds fragments in each audio clip of the dataset for training,
validation and testing of the CDNN (see Section

The time elapsed to obtain the time-frequency representation of the clips
in the GTZAN dataset with the procedure described above is about 55 sec-
onds, generating a HDF5 file (66.9 MB). Because of the number of MP3 files
in the song repository is less than the number of files of the GTZAN dataset,

the process is faster and the size of the HDF5 file is smaller (42.8 MB).

3.2 Data preprocessing

In order to obtain suitable representations for users’ interest in the taste
profile dataset and for songs’ spectrograms, it is necessary an additional

process of the data.

3.2.1 Rating from implicit user feedback

First, the text file of the downloaded MP3 metadata (see subsection is
used to retain the triplets, from the cleaned taste profile subset, that contain
the song IDs of the available audio clips. A reduced taste profile dataset with
4,685 triplets is obtained, corresponding to information of 53 users.

The reduced taste profile dataset represent the user listening habits as
implicit feedback, i.e., play counts of songs, it is necessary to normalise the
listening habits as explicit feedback, i.e., range of values [1 ... 5] that indicate
how much a user likes a song. Normalisation of play counts is computed with
the complementary cumulative distribution of play counts of a user, following

the procedure given by Celma (2008). Songs in the top 80 - 100% of the
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distribution get a rating of 5, songs in the 60 - 80% range get a 4, songs in
the 40 - 60% range get a 3, songs in the 20 - 40% get a 2 and songs in the
0 - 20% range get a rating of 1. An exception for this allocation of ratings

comes out when the coefficient of variation, given by Equation (3.1)):

oV = (3.1)

o
1
where, o is the standard deviation and p is the mean of the play counts of a

user, is less or equal than 0.5. In that case, every song gets a rating of 3.

3.2.2 Standardise time-frequency representation

The logarithmic mel-scaled power spectrograms obtained in subsection [3.1.3]
are normalised to have zero mean and unit variance in each frequency band,
using the fit and transform methods of the StandardScaler class from the
Scikit-learn (Pedregosa et al. [2011) package, as a common requirement of
several machine learning classifiers.

Additionally, the GTZAN normalised spectrograms dataset is split in
3 subsets: 500 spectrograms for training, 250 spectrograms for validation
and 250 spectrograms for testing. Each spectrogram is saved as a tuple
(spectrogram, tag) in a cPickle file, where tag is the number of the music
genre: 0 for blues, 1 for classical, 2 for country, 3 for disco, 4 for hiphop, 5

for jazz, 6 for metal, 7 for pop, 8 for reggae and 9 for rock.
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3.3 Algorithms

The hybrid music recommender approach in this project can be considered
as implementation of feature augmentation method and a meta-level method
presented in subsection [2.3.5] First, user profiles are generated using the
rating matrix and the song vector representation. Next, the model generated
is the input of a CB recommender to produce top-N song recommendations.

The general model of our hybrid recommender is shown in Figure (3.4

Meta-level

Feature Augmentation

User-item (rating)

matrix User modelling User profiles
Feature ?,u‘ Song / ’—>

Eiang& extraction vectors /

] / Top-N
CB filtering recommendation

Figure 3.4: Diagram of the hybrid music recommender

3.3.1 Probability of music genre representation

To represent an audio file in a 10-dimensional vector, whose dimensions cor-
respond to the 10 music genres specified in the GTZAN dataset, a CDNN
is implemented using Theano library. For intensive computation processes,
such as convolution, the implementation on equipment with Graphical Pro-
cessing Unit (GPU) acceleration is recommended. In this project, a CentOS
(Linux release 7.1.1503) server with a Tesla K40d™| GPU is exploited.

The scripts for logistic regression, multilayer perceptron and deep con-

volutional network designed for character recognition of MNIST[] dataset,

http: //www.nvidia.com/object /tesla-servers.html
Yhttp://www.iro.umontreal.ca/ lisa/deep/data/mnist /mnist.pkl.gz
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available on Deeplearning.net (2015) is adapted to our purpose of music genre
classification. ReLLU and dropout functions are defined in the deep convolu-

tional network script.

CDNN architecture

T
N ' 1st pooling layer .
f (4/32 filters shown) 2nd pooling layer
(4/32 filters shown)
I . Softmax
¥ ] N\ \\ O
A i O
: L
i ' 500 units
r y []; 2nd conv. layer
= 1st conv. layer (4/32 filters shown)

" (4/32 filters shown)

Input

Figure 3.5: Diagram of CDNN for music genre classification (Kereliuk,

Sturm, and Larsen 2015)

A similar architecture of a CDNN for music genre classification (Kereliuk,
Sturm, and Larsen is recreated in our project. A batch size of 20 and
a dropout rate of 0.20 for the convolutional layer units are considered.

Initially, the reshape of the 2-dimension normalised spectrograms (130
framesx 128 frequency bands) obtained in subsection to a 4-dimension
tensor, compatible with the input of the first convolutional layer (batch
sizex 1x130x128), is required.

The first convolutional layer consists of 32 filters, each one with a size
of 8 frames, with a max-pooling downsampling of 4, to reduce the size of

the spectrogram along the time axis. The size of the resulting spectrogram
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is 30x128 and the output of this first convolutional layer is a 4-dimension
tensor with a size of 20x32x30x128.

The second convolutional layer consists of 32 filters, each one with a size
of 8 frames, with a max-pooling downsampling of 4, to reduce the size of
the spectrogram obtained in the first layer. The size of the new spectrogram
is 5x128 and the output of this second convolutional layer is a 4-dimension
tensor with a size of 20x32x5x128.

Following the convolution process, the reshape of the 4-dimensional tensor
of the output of the second convolutional layer is required to feed the fully
connected MLP. The MLP consists of 500 ReLLUs.

Finally, the classification of music genre is accomplished with logistic
regression layer of the 500 output values from the MLP. This output layer

consists of 10 units with softmax activation function (see Equation (2.4))).

Learning parameters

The weights and biases of the units of the CDNN are the parameters to
be modelled by SGD to minimise a cost function. The cost function is the
negative log likelihood of the prediction in the output layer given the target
values, i.e., music genre ground truth.

The CDNN for training, validation and testing is run for 200 epochs, each
epoch equivalent to 50 iterations. The number of iterations corresponds to
the ratio between the number of spectrograms (1,000 for GTZAN dataset)
and the batch size.

According to Bengio (2012), the patience value is the minimum number

of training examples. In our project, the patience value is set at 1,000.
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In our testing, after 9 trials in the CDNN, we obtain a best classification
error of 38.8 % using the spectrograms corresponding to the GTZAN dataset
(see Table [5.1). The weights and biases for this best classification error are
saved in a cPickle file to be applied as initial parameters of the CDNN for

vector representation.

Vector representation

The script of CDNN is adapted to produce the vector representation of the
spectrograms. This CDNN uses the weights and biases learnt in genre clas-
sification process as initial parameters.

A 10-dimension vector is produced by the softmax output layer. Each
dimension corresponds to a music genre and each value represents the prob-
ability of a song to belong to a specific music genre, given the normalised

spectrogram at the input layer.

3.3.2 User profile modelling

To model user profiles from the triplets in the normalised taste profile dataset,
we adapt the permutation EDA (see algorithm |If on page and the con-
tinuous EDA (see algorithm [2/on page . For both EDAs, we consider the

following;:
e User representation S, = {(t1,7u1), - (i, Twi) [Tui > Tu -

e Rating threshold 7,} = 2, assuming that a user does not like songs

with ratings of 1 and 2 out of 5.
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e The stopping criteria is the maximum number of generations limited

to 250.

Modelling with Permutation EDA

In the case of permutation EDA, the genre tags (0 for blues, 1 for classical, 2
for country, 3 for disco, 4 for hiphop, 5 for jazz, 6 for metal, 7 for pop, 8 for
reggae and 9 for rock) are considered as the keywords k, in the set D, and
the weights w,, ; are 50 evenly spaced samples over the interval [0.1,0.9], thus,
the size of the set K, is N = 500 and the initial probability is ¢,; = 1/500.
The population size is equal to u = 53, that is the number of users in the
normalised taste profile dataset. Instead of using the Monte Carlo method to
generate the initial population of profile,, 10 tuples (k,,w, ) from K, are
random sampled for each user. The number of top individuals M is a half of
the total of users. The process of sampling new individuals is preserved. The
adapted permutation EDA for user modelling is illustrated in Algorithm
The time elapsed for modelling user profiles with the permutation EDA

is approximately 7.82 seconds.

Modelling with UM DAY

The UM DAY algorithm is adapted to select the top M, individuals by using
the fitness function (Equation on page exploited by the permutation
EDA. The population size is M = 53 users, the selection parameter is 7 = 0.5.
x; represent the probability value of the music genre dimension, ¢, in the
profile, vector.

In each generation, ¢, the mean value p;; and the variance ¢, is com-
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Algorithm 3 Calculate profile, for users in taste profile

Require: set D, weights w,, ;
Require: population size u, MAXGEN
Require: M = Round(u/2)
Assign a weight w,,; to each k, to build a set K, of size N
Assign a probability ¢,; = 1/N to each (ki wy;)
Generate initial population of profile,
while generation < MAXGEN do
Compute each fitness(profile,)
Rank individuals by their fitness value
Select top M < N individuals
Update ¢, ; by counting the occurrences of (k,,, w,, ;) in the M individuals
profiles
Generate profile, by random sampling according to updated ¢, ;
generation <— generation + 1
end while
return profile,

puted for every dimension, i, along the M, individuals vectors. For each
dimension, i.e., music genre, the normal distribution is calculated with its
corresponding mean value and variance, to estimate the individuals vectors
of the next generation. The time elapsed for modelling user profiles with

the continuous EDA is approximately 4.20 seconds.

3.3.3 Top-N songs recommendation

The final stage of the recommender systems implemented is to generate a list
of song recommendations according to the similarity values computed with

Equation (2.7) (see page [25)).
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Algorithm 4 Framework for UM DAY to model users

Require: population size M
Require: selection parameter 7
Generate M individuals at random
M sel < M- T
t<+0
while t < MAXGEN do
Compute each fitness(profile,)
Rank individuals by their fitness value

Select top M, individuals

i <= ﬁ Z?isfl ]

O"Qvt < MSelzfl Z?isfl (955 — [ig)?
P, o) © gt op(—5 (7))
Sample M individuals from p;(x;|p; 4, gzt)
t+—t+1

end while

Top-N recommendations in CB baseline

The list of recommendations in a CB recommender is given by the similarities
between the items that a user has already rated and the new items. It is
assumed the user has not seen before the new items.

First, the similarity matrix between every item in the training set is
computed. Only the £ = 30 most similar items are kept for each item.
Next, for each song that a user rated above the threshold (rating > 2), the k
neighbours are retrieved as a list of candidate items. The list is normalised
to have a maximum value of 1. The lists of candidates are appended. For the
repeated candidates, the similarity values are summed up. The N candidates

with higher similarity values are recommended to a user.
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Top-N recommendations in hybrid music recommender

In our hybrid music model (see Figure on page , the content based
filtering computes the similarity between a user interest profile and a each
song vector in the test set. The songs are ranked in descending order and
the first N songs of this ranking are recommended.

In our project, we experiment with different values for N, obtaining the
best results with the hybrid music recommender based on permutation EDA

for all the experiments. Refer to Section [5.2|for detailed results of evaluation.

3.4 Summary

In this chapter, we presented the collection and preprocessing of the taste
profile subset to model the user profiles with EDAs. As well, we presented
the procedure of time-frequency representation of the audio content to feed a
CDNN in order to obtain a 10-dimension vector representation corresponding
to the probability of a song to belong to a music genre. Also, we presented
the adapted architecture of the CDNN and the EDAs for hybrid recommen-
dation. In the following chapter, we introduce the evaluation method and

experiments to evaluate our hybrid recommender approach.
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Chapter 4

Experiments

In order to evaluate the performance of a recommender system, there are
several scenarios to be considered depending on the structure of the dataset
and the prediction accuracy. It is therefore necessary to determine a suitable
experiment for the evaluation of our proposed hybrid music recommender
that employs a rating matrix and vector representation of songs as inputs to
produce top-N song recommendations.

In addition, the performance of our hybrid approaches is compared with

a pure content-based recommender algorithm.

4.1 Evaluation for recommender systems

4.1.1 Types of experiments

The scenarios for experiments requires to define an hypothesis, controlling
variables and generalization of the results. Three types of experiments (Shani

and Gunawardana [2009) can be used to compare and evaluate recommender
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algorithms:

e Offline experiments: where recorded historic data of users’ ratings
are used to simulate online users behaviour. The aim of this type of
experiment is to refine approaches before testing with real users. On

the other hand, results may have biases due to distribution of users.

e User studies: where test subjects interact with the recommendation
system and its behaviour is recorded giving a large sets of quantita-
tive measurements. One disadvantage of this type of experiment is to
recruit subjects that represent the population of the users of the real

recommendation system.

e Online evaluation: where the designer of the recommender appli-
cation expect to influence the users’ behaviour. Usually, this type of

evaluation are run after extensive offline studies.

4.1.2 Evaluation strategies

On the other hand, evaluation of recommender systems can be classified

(Celma 2008)) in:

e System-centric process has been extensively exploited in CF systems.
The accuracy of recommendations is based exclusively on users’ dataset
and is evaluated through predictive accuracy, decision based and rank

based metrics.

e Network-centric process examines other components of the recom-

mendation system, such as diversity of recommendations, and they are
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measured as a complement of the metrics of system-centric evaluation.

e User-centric: The perceived quality and usefulness of recommenda-

tions for the users are measured via provided feedback.

4.1.3 Decision based metrics

Our hybrid recommender produces a list of songs for each user, hence, it
is necessary to evaluate the recommendation with a metrics derived from
confusion matriz that reflects the categorisation of test items as true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN). In

this project we consider the following metrics (Celma 2008):

e Precision is the ratio of correct positive predictions.

TP
Precision = ———— 4.1
recision = oo s (4.1)

e Recall is the ratio of positive instances predicted as positive.

TP
Recall = m—m (42)

e F1 measure, is the harmonic relation of precision and recall.

2 x Precision x Recall
Recall = 4.3
cea Precision + Recall (4.3)

e Accuracy, is the ratio of correct predictions.

TP+ TN
_ 44
Recall = P T TN T FN (4.4)
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4.2 Evaluation method

The hybrid music recommender system proposed in this project is evaluated
through an offline experiment and the results are presented with decision

based metrics described in the previous section.

4.2.1 Training set and test set

The normalised taste profile dataset (refer to subsection is split in
a training and a test set. For each user in the dataset, a random sample
corresponding to 20 % of the total number of ratings is assigned to the test
set, and the rest 80 % is assigned to the training set. The split process is

iterated for 10 times, resulting in a total of 10 training and 10 test sets.

4.2.2 Top-N evaluation

For each song in the user test set, we look up if the song is included or not
in the list of top-N recommendations.

If the test song is in the top-N recommendation and if the rating of the
test song is above the threshold (rating > 2), we count as a true positive,
otherwise is counted as a false positive.

If the test song is not in the top-N recommendation and if the rating of
the test song is above the threshold, we count as a false negative, otherwise

is counted as a true positive.
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Chapter 5

Results

5.1 Genre classification results

A total of 9 trials are executed for training, validating and testing the CDNN
using the normalised spectrograms of GTZAN dataset (see subsection|3.2.2)).
We obtained the following results showed in Table [5.1]

Table 5.1: Genre classification results

Trial Validation error (%) Test error (%) Iterations Time elapsed (min.)

1 28.0 65.2 650 7.00
2 37.6 46.0 2150 13.07
3 39.6 46.0 700 7.54
4 35.6 36.8 550 6.01
5 36.4 40.0 250 5.47
6 40.4 44.8 150 5.41
7 324 40.4 800 8.64
8 36.0 38.8 250 5.42
9 34.0 38.8 850 9.14

For the initial trial, the error is higher because the weight and bias val-

ues for each unit of the layers in the deep learning classifier are randomly
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initialised.

5.2 Recommender evaluation results

In general, the results demonstrate the hybrid music recommender based
on a permutation EDA presents a better performance compared with both
the CB recommender and the hybrid approach based on a continuous EDA.
Nevertheless, the recall values are lower in all cases. In Table the results

of top-b recommendation are shown.

Table 5.2: Evaluation of recommender systems (N=5)

Recommender Precision Recall F1 Accuracy

Content-based (baseline) 0.275 4+ 0.087  0.010 £ 0.003  0.020 + 0.007  0.681 £ 0.008
Hybrid (permutation EDA) 0.391 + 0.182 0.013 + 0.007 0.025 + 0.013 0.685 + 0.009
Hybrid (continuous UMDA)  0.318 + 0.142  0.011 £ 0.005  0.021 £+ 0.011  0.683 % 0.009

In Table [5.3] the results of top-10 songs recommendation are shown. In
this case, the precision value improve for the CB recommender. The accuracy

values for all recommender systems tend to decrease.

Table 5.3: Evaluation of recommender systems (N=10)

Recommender Precision Recall F1 Accuracy
Content-based (baseline) 0.301 £ 0.059  0.022 +£ 0.007  0.041 £ 0.012  0.678 £ 0.007
Hybrid (permutation EDA) 0.370 + 0.073 0.024 + 0.007 0.045 + 0.013 0.682 + 0.009
Hybrid (continuous UMDA)  0.309 + 0.100  0.019 £ 0.007  0.036 + 0.013  0.679 %+ 0.009

In Table [5.4] the results of top-20 songs recommendation are shown. In
this case, the recall values rise for all the recommender systems, compared
with the top-5 and top-10 recommendations, but the precision and accuracy

tend to decrease. At this point, we can deduce that our hybrid recommender
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approaches could improve the recall without losing reached precision if N is
in a value between 10 and 20.

Table 5.4: Evaluation of recommender systems (N=20)

Recommender Precision Recall F1 Accuracy

Content-based (baseline) 0.281 £ 0.052 0.041 &£ 0.006  0.071 £ 0.010 0.666 + 0.006
Hybrid (permutation EDA) 0.363 £+ 0.041 0.047 + 0.008 0.084 + 0.014 0.676 =+ 0.007
Hybrid (continuous UMDA)  0.302 £ 0.067  0.039 £ 0.011 0.070 £ 0.019 0.671 £ 0.010
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Chapter 6

Conclusion

The whole aim of our project has been the design and the implementation
of an hybrid music recommender in order to mitigate the cold-start problem
in content-based recommender systems. We investigated several types of hy-
bridisation in recommender systems to choose a suitable architecture (shown
in for the available datasets. To represent real world users and raw wave-
forms, we decided to investigate and implement state-of-the-art techniques.

Despite of the success in computer vision field, we found in our project
that convolutional deep neural networks achieve similar results to long-established
music genre classifier approaches in music information retrieval field.

Due to the natural selection concept associated to estimation of distri-
bution algorithms, we investigated and considered these optimisation tech-
niques for modelling users’ listening behaviour in terms of probabilities of
music genres from the songs in they listened.

On the other hand, we found that a limited number of genres for song

representation lead us to coarse predictions according to decision-based met-
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rics.

6.1 Future work

For the future, we have the intention to enhance our hybrid music recom-
mender considering a wide range of music genres or latent vectors for item
representation. We shall work on investigating several configurations of con-
volutional deep neural networks and different types of deep learning tech-
niques, particularly, unsupervised learning approaches, for a better high-level
representation of audio waveforms. In addition, we will continue investigat-
ing the fascinating estimation of distribution algorithms, considering another
fitness functions to optimise, to model user profiles in recommender systems.
Finally, we also consider the evaluation of hybrid recommender with an online

experiment.
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