
School of Electronic

Engineering and

Computer Science

MSc Sound and Music Computing

Project Report 2015

Hybrid music recommender

using content-based and

social information

Paulo Esteban Chiliguano Torres

September 1, 2015



Acknowledgements

I wish to express my sincere gratitude to Dr. Georgy Fazekas, Lecturer in

Digital Media at Queen Mary University of London, for giving me the oppor-

tunity to work on this state-of-the-art field and for his guidance and valuable

suggestions during the planning and development of this project. I also wish

to acknowledge the supplementary assistance provided by Dr. Tony Stock-

man and Dr. Mathieu Barthet during my time as a student at Queen Mary

University of London.

I am particularly grateful with National Government of the Republic of

Ecuador for awarding me with a scholarship to study a postgraduate taught

degree at a high-quality research university in the United Kingdom of Great

Britain and Northern Ireland.

Finally, a special warm thanks goes to my parents, my brothers and Miss

Ana Costilla for their support and encouragement throughout my studies.



Abstract

There is a vast range of Internet resources available today, including songs,

albums, playlists or podcasts, that a user cannot discover if there is not

a tool to filter the items that the user might consider relevant. Several

recommendation techniques has been developed since the internet explosion

to achieve this filtering task. In an attempt to recommend relevant song

to users, we propose an hybrid recommender that considers real-world users

information and high-level representation for audio data. We use a deep

learning technique, convolutional deep neural network, to represent the audio

data in an abstract level. As our main contribution, we investigate a state-

of-the-art technique, estimation of distribution algorithm, to capture the

listening behaviour of an individual from the features of the songs that are

interesting to the user. The designed hybrid music recommender outperform

the predictions compared with a traditional content-based recommender.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Online Social Networks . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Music services platforms . . . . . . . . . . . . . . . . . . . . . 7

2.3 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Collaborative filtering . . . . . . . . . . . . . . . . . . 8

2.3.2 Content-based filtering . . . . . . . . . . . . . . . . . . 11

2.3.3 Item Representation . . . . . . . . . . . . . . . . . . . 12

2.3.4 User Modelling . . . . . . . . . . . . . . . . . . . . . . 13

2.3.5 Hybrid recommender approaches . . . . . . . . . . . . 13

2.4 Music Information Retrieval . . . . . . . . . . . . . . . . . . . 15

2.4.1 Genre classification . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Music recommender systems . . . . . . . . . . . . . . . 16

2.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



2.5.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . 18

2.5.2 Convolutional Deep Neural Networks . . . . . . . . . . 20

2.6 Estimation of Distribution Algorithms . . . . . . . . . . . . . 23

2.6.1 A Hybrid Recommendation Model Based on EDA . . . 24

2.6.2 Continuous Univariate Marginal Distribution Algorithm 26

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Methodology 28

3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Taste Profile subset cleaning . . . . . . . . . . . . . . . 29

3.1.2 Fetching audio data . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Intermediate time-frequency representation for audio

signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Rating from implicit user feedback . . . . . . . . . . . 34

3.2.2 Standardise time-frequency representation . . . . . . . 35

3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Probability of music genre representation . . . . . . . . 36

3.3.2 User profile modelling . . . . . . . . . . . . . . . . . . 39

3.3.3 Top-N songs recommendation . . . . . . . . . . . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Experiments 44

4.1 Evaluation for recommender systems . . . . . . . . . . . . . . 44

4.1.1 Types of experiments . . . . . . . . . . . . . . . . . . . 44

4.1.2 Evaluation strategies . . . . . . . . . . . . . . . . . . . 45



4.1.3 Decision based metrics . . . . . . . . . . . . . . . . . . 46

4.2 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Training set and test set . . . . . . . . . . . . . . . . . 47

4.2.2 Top-N evaluation . . . . . . . . . . . . . . . . . . . . . 47

5 Results 48

5.1 Genre classification results . . . . . . . . . . . . . . . . . . . . 48

5.2 Recommender evaluation results . . . . . . . . . . . . . . . . . 49

6 Conclusion 51

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References 53



List of Figures

2.1 Collaborative filtering process (Sarwar et al. 2001) . . . . . . . 9

2.2 User based collaborative filtering (Recommendation Engine

2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Item based collaborative filtering (Recommendation Engine

2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Content-based filtering process (Blog.seagatesoft.com 2015) . . 11

2.5 Three-way aspect model (Yoshii et al. 2008) . . . . . . . . . . 17

2.6 Schematic representation of a deep neural network (Brown 2014) 19

2.7 Convolutional deep neural network LeNet model (Deeplearn-

ing.net 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Flowchart of estimation of distribution algorithm (Ding, Ding,

and Peng 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Diagram of the cleaning process of the Taste Profile subset . . 29

3.2 Flowchart of the fetching audio process . . . . . . . . . . . . . 32

3.3 Flowchart for time-frequency representation process . . . . . . 32

3.4 Diagram of the hybrid music recommender . . . . . . . . . . . 36



3.5 Diagram of CDNN for music genre classification (Kereliuk,

Sturm, and Larsen 2015) . . . . . . . . . . . . . . . . . . . . . 37



List of Tables

5.1 Genre classification results . . . . . . . . . . . . . . . . . . . . 48

5.2 Evaluation of recommender systems (N=5) . . . . . . . . . . . 49

5.3 Evaluation of recommender systems (N=10) . . . . . . . . . . 49

5.4 Evaluation of recommender systems (N=20) . . . . . . . . . . 50



Chapter 1

Introduction

Music has accompanied social activities on our daily lives and has influenced

the shape of the technology landscape that we have today. Portable media

players, mobile device applications or music streaming services enable us

the access to a large volume of digital recorded music. This vast range of

music tracks might include songs that are relevant or not to a listener, being

necessary to develop facilities to bring out appropriate musical pieces to an

user.

Recommender systems can be described as engines that guide the users

to suitable objects from a large number of options in a particular domain

such as books, films or music. The available information of users and items’

attributes is analysed and exploited by the recommender systems to produce

a list of previously unseen items that each user might find enjoyable. De-

pending on the analysed data, the design of a recommender can be focused

on historical ratings given by users or similarities between the attributes of

items that an user already rated.

1



1.1 Motivation

Due to the available information of relationship between users and items

would be sparse, e.g., most part of the users tend to do not give enough rat-

ings, the accuracy of predictions would decrease. Another disadvantage of

traditional recommender systems, referred as cold-start problem, arises when

a new item cannot be recommended until it gets enough ratings, or, equiva-

lently, when a new user does not have any ratings (Melville and Sindhwani

2010). In order to alleviate the rating sparsity and cold-start problems, there

is the motivation to combine two or more recommendation techniques into

hybrid approaches.

Deep learning is an approach to artificial intelligence for describing raw

data as a nested hierarchy of concepts, with each abstract concept defined

in terms of simpler representations. For example, deep learning can describe

high-level features of an image of a car such as position, colour or brightness

of the object, in terms of contours, which are also represented in terms of

edges. (Bengio, Goodfellow, and Courville 2015)

Inspired in natural evolution of species, estimation of distribution algo-

rithms (EDAs) (Larranaga and Lozano 2002) are robust techniques developed

during the last decade for optimisation in Statistics and Machine Learning

fields. EDAs can capture the explicit structure of a population with a prob-

ability distribution estimated from the best individuals of that population.

2



1.2 Aims

We aim to design and implement a hybrid music recommender to mitigate

the cold-start problem in a content-based recommendation strategy. The ar-

chitecture of our hybrid recommender approach combines two fundamental

tasks (Recommender Systems 2012): user modelling and information filter-

ing. Both of these techniques require user-item data to learn user’s interest

and select items based on their content description, respectively.

In this project, user-item information is obtained from the Taste Pro-

file dataset, which is a complementary subset of the Million Song Dataset

(Bertin-Mahieux et al. 2011) and provides real world listeners activity, i.e.,

play counts of a song. On the other hand, the items to consolidate the music

library are obtained by using the unique identifier of each song to fetch its

audio data from 7digital.

A convolutional deep neural network (CDNN), which is a deep learning

model, is employed to describe the time-frequency content of each audio clip

with a n-dimensional vector, whose dimensions represent the probability of

a clip to belong to an specific music genre. In this project, we bound the

number of music genres to 10.

As a primary contribution of this project, estimation of distribution al-

gorithms (EDAs) are investigated to model user profiles in terms of proba-

bilities of music genres preferences. The algorithms use play count and the

content vector of each song in the user’s collection to optimise the profile.

In addition, each dimension in the content vector is treated as a discrete

and continuous variable, for evaluation purposes. To our knowledge, this is

3



the first approach that uses a continuous EDA for user profile modelling in

recommender systems.

Each user profile then is compared with the vector representation of an

audio clip to compute the similarity value between them. Recommendations

for an user are built up by selecting the clips with highest similarity values.

The evaluation of our hybrid music recommender approach is assessed

by comparing the results obtained with a traditional content-based recom-

mender.

1.3 Thesis outline

The rest of the report is organised as follows: Chapter 2 provides an overview

in recommender systems. Recommendation process, associated challenges,

and related work based on state-of-the-art techniques are discussed. In Chap-

ter 3, we present our proposed hybrid recommendation approach and describe

the stages and algorithms in detail. The experiments and evaluation proto-

cols are to assess the performance of the hybrid recommender presented in

Chapter 4. In Chapter 5, we proceed to discuss and analyse the results from

the conducted experiments to evaluate the proposed hybrid music recom-

mender. In Chapter 6, we present the conclusions and some thoughts for

further research.

4



Chapter 2

Background

Recommender systems create opportunities and challenges for industry to

understand consumption behaviour of users. In particular, for music indus-

try, the development of recommender systems could improve digital music

sales (Ringen 2015), and also, it could assist the listeners to discover new

music through their habits (Hypebot.com 2015). However, when there is no

priori information of a new introduced item in a recommender system, known

as the cold-start problem, popular songs could be favoured in recommenda-

tion process instead of items in the long tail, i.e., songs that do not have

enough ratings. Usually, content-based recommender systems are used to

solve the cold-start problem because similarities between items are based on

the content without regarding the ratings (Park and Tuzhilin 2008). Another

solution to address the cold-start problem is to combine recommendation

techniques to boost the strengths of each technique in an hybrid architec-

ture. (Melville and Sindhwani 2010)

In this chapter, we present the importance of online social networks and

5



music services platforms for retrieving user-item information, in conjunction

with related work on music recommender systems. Subsequently, a novel

approach of an hybrid recommendation model based on estimation of distri-

bution algorithms (EDAs) is introduced and examined.

2.1 Online Social Networks

Social network sites (boyd and Ellison 2007) are defined as:

“Web-based services that allow individuals to (1) construct a pub-

lic or semi-public profile within a bounded system, (2) articulate

a list of other users with whom they share a connection, and (3)

view and traverse their list of connections and those made by

others within the system.”

During the last decade, online social networks, which are also identified as

social media platforms, have become the outstanding technologies for retriev-

ing and exchanging multimedia information (Putzke et al. 2014). Facebook,

Twitter or YouTube, have enabled users to produce and share content on the

internet, specially, customers around the world are renovating business mod-

els by sharing reviews and comments of products directly to companies. This

produced content provides opportunities for research to track consumer’s be-

haviour. (Smith 2009)

In particular, Last.fm1 is an online radio station that also have the facil-

ities of a social media platform, where a user profile is built up by collecting

the music tracks listened on multimedia players through a indexing process

1http://www.last.fm/

6



called scrobbling. This profile may expose music consumption and listening

behaviour. (Putzke et al. 2014)

2.2 Music services platforms

The Echo Nest2 was a music intelligence company that offered solutions for

music discovery and personalisation, dynamic curated sources, audio finger-

printing and interactive music applications. In 2014, The Echo Nest was

acquired by Spotify3, which is a commercial music streaming service, where

a user can browse and listen music tracks sorted by artists, albums, genres

or playlists.

However, The Echo Nest API is still active for developer community and

offers the access to artists, songs, taste profiles and playlists data. Particu-

larly, The Echo Nest API is able to retrieve information limited to a particular

music tracks catalogue such as 7digital4.

Both The Echo Nest and 7digital require to sign up for a free account

to get unique keys for OAuth5 authentication in order to retrieve desired

information through their respective APIs. As well, free account has limited

number of calls, in the case of Echo Nest is limited to 20 request per minute

and in the case of 7digital is limited to 4000 request per day.

In this project, we use a The Echo Nest account to get music tracks iden-

tifiers for each song in the user-item dataset and we use a 7digital developer

account to fetch audio for each music track catalogue identifier. The user-

2http://developer.echonest.com/
3https://www.spotify.com/
4http://developer.7digital.com/
5http://oauth.net/

7



item dataset consist of user - song - play count triplets of the Taste Profile6

subset which contains real world listeners activity provided among Echo Nest

partners including Last.fm.

2.3 Recommender Systems

Recommender systems are software or technical facilities to provide items

suggestions or predict customer preferences by using prior user information.

These systems play an important role in commercial applications to increase

sales and convey user satisfaction. In general, recommender systems can be

categorised in two major groups: collaborative filtering and content-based

filtering (Melville and Sindhwani 2010).

Celma (2008) considers also another methods for music recommendation

such as demographic filtering and named context-based.

2.3.1 Collaborative filtering

In collaborative filtering (CF) (Yao et al. 2015), a m×n rating matrix (Fig-

ure 2.1) represents the relationships between m users and n items.

Recommendations are based on the computed similarities between rows

(for users) or columns (for items), hence, CF can be further subdivided in

the following neighbourhood models (Hu, Volinsky, and Koren 2008):

• User based collaborative filtering, produce a recommendation of a

previously unseen item based on similarity between users (Figure 2.2).

6http://labrosa.ee.columbia.edu/millionsong/tasteprofile

8



Figure 2.1: Collaborative filtering process (Sarwar et al. 2001)

Figure 2.2: User based collaborative filtering (Recommendation Engine 2013)

• Item based collaborative filtering, produce a recommendation by com-

paring the similarities between a previously unseen item and the user’s

items (Figure 2.3).

Figure 2.3: Item based collaborative filtering (Recommendation Engine 2013)

9



Similarities between a pair of users a,u are usually computed with Pearson

correlation metric (Sarwar et al. 2001), given by Equation (2.1):

sim(a, u) =

∑
i∈I(ra,i − r̄a)(ru,i − r̄u)√∑

i∈I(ra,i − r̄a)2
√∑

i∈I(ru,i − r̄u)2
(2.1)

where I is the set of items rated by both users, ru,i is the rating given to

item i by user u, and r̄u is the mean rating given by user u. Equivalently,

for similarities between a pair of items i,j, the correlation is given by Equa-

tion (2.2):

sim(i, j) =

∑
u∈U(ru,i − r̄i)(ru,j − r̄j)√∑

u∈U(ru,i − r̄i)2
√∑

u∈U(ru,j − r̄j)2
(2.2)

where U is the set of users who have rated both items, ru,i is the rating given

to item i by user u, and r̄i is the mean rating given to item i.

The strength of CF is that the recommendation process is independent of

the item features (Burke 2002). On the other hand, CF would not be suitable

technique when the user-item matrix is sparse. Moreover, CF considers only

the most rated items, therefore, ignores the items in the long tail, and it is

unable to handle the cold start problem. (Dai et al. 2014)

The cold start problem

Recommendation process in CF might be difficult either for a user or an item

with few ratings. (Burke 2002)

10



The long tail phenomenon

The long tail items according to Yin et al. (2012) are referred to products

with a low volume of sales but they can be more profitable than the popular

items if they are recommended to the right consumers.

2.3.2 Content-based filtering

Content based (CB) filtering is based on the analysis of the features that

describe the items. The recommendation component consists in matching

up the attributes of the items that a user has already rated, usually referred

as the user profile (Lops, Gemmis, and Semeraro 2011), against the attributes

of a previously unseen products to produce a list of top-N recommendations.

Figure 2.4 shows the architecture of content-based recommendation process.

Figure 2.4: Content-based filtering process (Blog.seagatesoft.com 2015)

One of the strengths of CB filtering is that recommendation process is

entirely based on the attributes of the items, thus, the recommendations pro-

duced for each user is independent from the other users information. Also,

a CB recommender allows to recommend items that do not have any rat-

11



ings, therefore, they can diminish the effects of cold-start problem. (Lops,

Gemmis, and Semeraro 2011)

Limitations of CB filtering

One disadvantage of CB filtering is that personal reviews are not considered

in the recommendation process, because this technique is limited to explicit

representation of items (Celma 2008). Moreover, some representations limit

the description to certain aspects only (Lops, Gemmis, and Semeraro 2011).

Another limitation of CB might be the collection of external data due to

restricted access, e.g., the Million Song Dataset (Bertin-Mahieux et al. 2011)

does not provide audio data due to copyright restrictions7 and some preview

clips are not available in the 7digital UK music catalogue.

In our project, a CB recommender is used as the baseline to show a

improved performance in music recommendation. Please refer to Section 5.2

for more detail.

2.3.3 Item Representation

Items require an accurate description to achieve upstanding results for rec-

ommending items to users (Celma 2008). In majority of the content-based

filtering systems, item attributes are textual features extracted from web

resources. (Lops, Gemmis, and Semeraro 2011)

In our approach, we describe the songs in terms of n-dimensional vectors.

Each dimension in the vector represent the probability of the song to belong

7http://labrosa.ee.columbia.edu/millionsong/pages/can-i-contact-you-privately-get-
audio

12



to a music genre. The probalitity estimation is obtained from a music clas-

sifier implemented with a deep learning technique. The song representation

process is illustrated in section 3.3.1

2.3.4 User Modelling

“User modeling [sic] is a discipline that deals with both how information

about the user can be acquired and used by an automated system.” (Recom-

mender Systems 2012)

Modelling a user profile consists of designing a structure for recording the

interests which describe a user. There are several techniques for modelling

an user profiles: vector, connexion, ontology and multidimensional represen-

tation. (Bouneffouf 2013)

In our project, we model each user profile through EDAs by minimising

a fitness function. The parameters of the fitness function are the rating and

similarity values of each song that a user has listened. The user profile is also

represented in a n-dimensional vector of probabilities of music genres. This

process is illustrated in section 3.3.2

2.3.5 Hybrid recommender approaches

An hybrid recommender system is developed through the combination of

the recommendation techniques mentioned in the previous sections. Usu-

ally, hybrid approaches boost the advantages of CF by considering the user’s

feedback and the advantages of CB by taking into count the item attributes.

According to Burke (2002), there are the following combination methods

13



to accomplish hybridisation:

• Weighted method, where a single item recommendation is computed

as a linear combination of the recommendation value from each tech-

nique involved. The weight assigned to each recommender can be ad-

justed by considering additional feedback from the user.

• Switching method, where the hybrid system uses a criteria depend-

ing on the input data to switch between recommendation techniques

implemented in the system.

• Mixed method, where recommendations from several different types

of recommender are presented simultaneously.

• Feature combination method, where CF results are treated as addi-

tional attributes of a CB filtering recommender.

• Cascade method, where one recommender refines the coarse recom-

mendations set given by the first recommender. This method is more

efficient than the weighted method, because cascade implementation

do not process every item at each stage.

• Feature augmentation method, where the rating of an item from one

recommender is used as an input feature of another recommendation

technique.

• Meta-level method, where a model generated for user’s interest rep-

resentation using one recommendation technique is used as the input

of another recommender system. The advantage of this method is the

14



performance of the second recommender that uses the compressed rep-

resentation instead of sparse raw data.

The hybrid music recommender approach in this project can be consid-

ered as implementation of feature augmentation method and a meta-level

method. The general model of our hybrid recommender is explained in de-

tail in Section 3.3.

2.4 Music Information Retrieval

Music Information Retrieval (MIR) (Casey et al. 2008) is a field of research

for better human understanding of music data in an effort to reduce the

semantic gap (Celma, Herrera, and Serra 2006) between high-level musical

information and low-level audio data. Applications of MIR include artist

identification, genre classification and music recommender systems (Weston

et al. 2012; Yoshii et al. 2008).

2.4.1 Genre classification

Music classification is one of the main tasks in MIR for clustering audio tracks

based on similarities between features of pieces of music. Automatic musi-

cal genre classification approach proposed by Tzanetakis and Cook (2002),

which uses GTZAN genre dataset8, has been widely used in the past decade.

The GTZAN dataset consists of a total of 1,000 clips, corresponding to 100

examples for each of the 10 music genres: blues, classical, country, disco,

8http://marsyas.info/downloads/datasets.html

15



hiphop, jazz, metal, pop, reggae and rock. The total duration of each clip is

30 seconds.

Nonetheless, the GTZAN dataset has inaccuracies (Sturm 2012), it still

provides an useful baseline to compare genre classifiers.

2.4.2 Music recommender systems

Collaborative retrieval music recommender

Weston et al. (2012) proposed a latent collaborative retrieval algorithm us-

ing the Last.fm Dataset - 1K users9 dataset. For each (artist, song) tuplet

in the dataset, they computed the audio data using 39-dimensional vector

corresponding to 13 Mel Frequency Cepstral Coefficients (MFCCs),and the

first and the second derivatives. The vectors obtained are used to build up

a dictionary using the K-means algorithm. Each audio frame is represented

with a vector that contains the number of occurrences of a dictionary vector

in the frame. The collaborative retrieval algorithm present outperforming

results compared with the Singular Value Decomposition (SVD) and Non-

negative Matrix Factorization (NMF) methods used on collaborative filtering

recommendation tasks.

Hybrid music recommender

Yoshii et al. (2008) proposed a hybrid recommender system considering rating

scores collected from Amazon.co.jp and acoustic features derived from the

signals of musical pieces corresponding to Japanese CD singles that were

9http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html

16



ranked in weekly top-20 from April 2000 to December 2005. Acoustic features

for each piece are represented as a bag-of-timbres, i.e., a set of weights of

polyphonic timbres, equivalent to a 13-dimensional MFCC representation.

Bags of timbres are computed with a Gaussian Mixture Model, considering

the same combination of Gaussians for all the pieces.

A three-way aspect model (see Figure 2.5) is used to decompose the joint

probability of users U, pieces M and features T into a set of latent genre

variables Z. It is assumed that user u stochastically choose a genre z according

to their preferences and then the genre z stochastically generates a piece of

music m and an acoustic feature t.

Figure 2.5: Three-way aspect model (Yoshii et al. 2008)

The results of the comparative experiments revealed that three-way as-

pect hybrid method outperformed the CF and CB recommendation tech-

niques in terms of accuracy considering |T | = 64 features and |Z| = 10 latent

variables.

17



2.5 Deep Learning

High-level features that help us make sense of an observed data., e.g. genre,

mood or release time in a music library could be difficult to compute. Deep

learning algorithms allows us to build complex concepts out of simpler con-

cepts (Bengio, Goodfellow, and Courville 2015). Deep learning can solve

the difficulty of representing high-level features, e.g., perceived genre in a

piece of music, by expressing them in terms of low-level signal features, e.g.

spectrum, frequency or pitch.

In MIR, deep learning methods capture the attention of researchers for

the following reasons (Kereliuk, Sturm, and Larsen 2015):

• Hierarchical representations of structures in data.

• Efficient feature learning and classification algorithms.

• Open and publicly available implementations, e.g., Theano (Bastien et

al. 2012; Bergstra et al. 2010) library for Python.

These advantages of deep learning methods enable us to learn abstractions

from music low-level content in order to reduce the semantic gap (Celma,

Herrera, and Serra 2006) in MIR. Additionally, feature extraction does not

require significant domain knowledge compared to hand-crafted engineering.

Nonetheless, deep learning implementations require a lot of data.

2.5.1 Deep Neural Networks

A deep neural network (DNN) (Hinton et al. 2012) is defined as a feed-

forward artificial neural network (ANN), or multi-layer perceptron (MLP),

18



with more than one layer of hidden units between the input and the output

layer (see Figure 2.6).

Figure 2.6: Schematic representation of a deep neural network (Brown 2014)

Each hidden unit j maps its total input from the layer below xj, given

by Equation (2.3)

xj = bj +
∑
i

yiwij (2.3)

where bj is the bias of unit j, i is an index over units in the layer below,

and wij is the weight on a connection to unit j from unit i in the layer

below, to a scalar value yj that is directed to the layer above. The activation

function of hidden units can be hyperbolic tangent, logistic or rectifier linear

activation function. For classification, output unit j converts its total input

xj into a class probability pj by using the softmax nonlinearity, given by

Equation (2.4)

pj =
expxj∑
k expxk

(2.4)

where k is the number of classes.

19



Music Feature Learning

Sigtia and Dixon (2014) examined and compared DNNs to discover features

from the GTZAN dataset and the ISMIR 2004 genre classification dataset10,

using rectifier linear units (ReLUs) and dropout regularisation. The ReLU

activation function is defined as max(x, 0). ReLUs provides better conver-

gence without pre-training. Dropout regularisation reduces the problem of

overfitting.

First, the GTZAN dataset was divided into four 50/25/25 train, valida-

tion, test parts. For each audio clip of the dataset, they calculated the Fast

Fourier Transform (FFT) on frames of length 1,024 samples (22,050 kHz

sampling rate) with a window overlap of 50%. Next, they used the magni-

tude of each FFT frame resulting in a 513 dimensional vector. And then,

each feature dimension is normalised to have zero mean and unit standard

deviation.

For the deep neural network, the 500 hidden units were trained with

stochastic gradient descent (SGD) with a learning rate of 0.01, a patience of

10 and a dropout rate of 0.25.

The system classifies the GTZAN data with an accuracy of 83±1.1%, a

value of the same order of results obtained with hand-crafted features.

2.5.2 Convolutional Deep Neural Networks

Inspired in the behaviour of animal visual processing system (Deeplearn-

ing.net 2015), a convolutional deep neural network (CDNN) (Bengio, Good-

10http://ismir2004.ismir.net/genre contest/

20



fellow, and Courville 2015; Ufldl.stanford.edu 2015) is a type of MLP that

uses convolution operation instead of matrix multiplication for processing

data that has grid-like topology. CDNNs are designed to recognize visual

patterns directly from pixel images. In general, the architecture of a CDNN

is based on:

• Sparse connectivity: the inputs of hidden units in an upper layer m

are from a subset of units in a lower layer m−1.

• Shared weights: each hidden unit in a layer share the same weight

vector and bias. The layer with this parametrisation form a feature

map.

• Convolutional layers: A feature map is obtained by convolution

of the input image with a linear filter, adding a bias term and then

applying a non-linear function. Each convolutional (hidden) layer is

composed of multiple feature maps.

• Max-pooling: is a non-linear down-sampling to divide the input im-

age into a set of non-overlapping rectangles and, for each rectangle, the

maximum value is returned.

LeNet-5 (LeCun 2015) is one model of CDNN designed for recognition of

handwritten and machine-printed characters. In Figure 2.7, the LeNet model

is illustrated. The lower-layers are composed of convolution and max-pooling

layers and the upper-layer is a fully-connected MLP. The input to MLP is

the set of all features maps at the layer below.

21



Figure 2.7: Convolutional deep neural network LeNet model (Deeplearn-
ing.net 2015)

Deep content-based music recommendation

Oord, Dieleman, and Schrauwen (2013) proposed to use a latent factor model

for CB recommendation and the implementation of a CDNN to predict the

latent factors from music audio. To obtain 50-dimension latent vectors, they

used a weighted matrix factorisation (WMF) algorithm on the Taste Profile

Subset. Also, they retrieved audio clips for over 99% of the songs in the

dataset from 7digital.com.

To train the CDNN, the latent vectors obtained through the WMF are

used as ground truth. The input of the CDNN is a log-compressed mel-

spectrogram with 128 components computed from windows of 1,024 samples

and a hop size of 512 samples (sampling rate of 22,050 Hz) for each audio

clip. The duration of audio clips is limited to 3 seconds.

They used 10-fold cross validation and obtained an average area under

the ROC curve (AUC) of 0.86703 for prediction based on the latent factor

vectors, outperforming the bag-of-timbres approach.

22



2.6 Estimation of Distribution Algorithms

Inspired in natural selection of species, an estimation of distribution algo-

rithm (EDA) (Pelikan, Hauschild, and Lobo 2015; Ding, Ding, and Peng

2015; Santana et al. 2010) is an optimisation technique that estimates a

probabilistic model from a sample of promising individuals, which is used to

generate a new population and leading to an optimal solution of an objective

function, called the fitness function, until a termination criteria, e.g., max-

imisation, minimisation, maximum number of generations, is satisfied. These

algorithms were applied to solve complex problems such as load balancing

for mobile networks (Hejazi and Stapleton 2015) or software reliability pre-

diction (Jin and Jin 2014). In Figure 2.8 we show the general flowchart of

an EDA.

Figure 2.8: Flowchart of estimation of distribution algorithm (Ding, Ding,
and Peng 2015)

According to Pelikan, Hauschild, and Lobo (2015), the main components

of an EDA are a selection operator, a class of probabilistic models for mod-

23



elling and sampling, and a replacement operator for combining the old pop-

ulation with the offspring. Also, regarding the types of distributions that

an EDA are able to capture (Pelikan, Hauschild, and Lobo 2015) can be

categorised in four broad groups:

• Discrete variables EDAs, where candidate solutions are represented

by fixed-length strings of a finite cardinality.

• Permutation EDAs, where candidate solutions are represented by

permutations over a given set of elements.

• Real-valued vectors (continuous) EDAs, where candidate solu-

tions are mapped from real-valued variables into a discrete domain or

the probabilistic model defined on real-valued variables are considered.

• Genetic programming EDAs.

The advantages of using EDAs include the discovery of problem-specific

features or reducing the memory requirements. However, it is time consuming

to build explicit probabilistic models. (ibid.)

In our project, we investigate permutation EDAs and continuous EDAs

for user profile modelling.

2.6.1 A Hybrid Recommendation Model Based on EDA

Liang et al. (2014) exploited a permutation EDA to model user profiles in an

hybrid model for movie recommendation using the MovieLens 1M dataset11.

11http://grouplens.org/datasets/movielens/

24



A movie, i, is described using a vector, ti = {(k1, w1), . . . , (kn, wn)}, where

the keywords kn and weights wn are calculated with term frequency-inverse

document frequency (TF-IDF) technique. A user is initially represented by

a set, Su = {(t1, ru,1), . . . , (ti, ru,i)|ru,i > r̄u}, where, ru,i is the rating of the

movie i given by user u, and r̄u is a threshold. The keywords in every Su set

are embedded in a new set, Du.

The goal is to learn the user profile, profileu = {(k1, w1), . . . , (kn, wn)},

by minimisation of the fitness function, defined by Equation (2.5)

fitness(profileu) =
∑
i∈Su

log(ru,i × sim(profileu, ti)) (2.5)

where sim(profileu, ti) is computed by the cosine similarity coefficient, de-

fined by Equation (2.6)

sim(profileu, ti) = cos(profileu, ti) =
profileu · ti

‖profileu‖ × ‖ti‖
(2.6)

The pseudocode of EDA implemented by Liang et al. (2014) is delineated

by Algorithm 1, where MAXGEN is the maximum number of generations.

To recommend a new movie, j, to a user, the similarity between the user

profile, ui, and the movie vector, tj, is calculated using Pearson correlation

coefficient, defined by Equation (2.7):

sim(ui, tj) =

∑
c∈Ii∩Ij(wi,c − w̄i)(wj,c − w̄j)√∑

c∈Iu∩Ij(wi,c − w̄i)2
√∑

c∈Iu∩Ij(wj,c − w̄j)2
(2.7)

where, c ∈ Ii ∩ Ij are the keywords in common between the user profile and

25



Algorithm 1 Calculate profileu

Require: set Du, weights wn,i
Require: population size N , MAXGEN

Random selection of keywords kn from Du

Assign a weight wn,i to each kn to build a set Ku of size N
Assign a probability cn,i = 1/N to each (kn, wn,i)
Generate initial population of profileu by Monte Carlo method
while generation < MAXGEN do

Compute each fitness(profileu)
Rank individuals by their fitness value
Select top M < N individuals
Update cn,i by counting the occurrences of (kn, wn,i) in the M individuals
profiles
Generate profileu by random sampling according to updated cn,i

end while
return profileu

the new movie vector, wi,c and wj,c are the weights of keyword c in the user

profile and movie vector, w̄i is the mean weight of user profile and w̄j is the

mean weight of movie vector.

In our approach, we use the algorithm proposed by Liang et al. (2014)

to model user profiles but considering probability values of music genres

instead of weight values of keywords. The adapted algorithm is explained in

subsection 3.3.2.

2.6.2 Continuous Univariate Marginal Distribution Al-

gorithm

Gallagher et al. (2007) presented the continuous univariate marginal distri-

bution algorithm (UMDAGc ) as an extension of a discrete variable EDA.

The general pseudocode of the UMDAGc is delineated in Algorithm 2, where

26



xi ∈ x represent the i parameter of x individual solution.

Algorithm 2 Framework for UMDAGc

Require: population size M
Require: selection parameter τ
t← 0
Generate M individuals at random
while t < stopping criteria do
Msel ←M · τ
Select Msel individuals
µi,t ← 1

Msel

∑Msel

j=1 x
j
i

σ2
i,t ← 1

Msel−1
∑Msel

j=1 (xji − µi,t)2

pt(xi|µi,t, σ2
i,t)← 1√

2πσi,t
exp(−1

2
(
xi−µi,t
σi,t

)2)

Sample M individuals from pt(xi|µi,t, σ2
i,t)

t← t+ 1
end while

To our knowledge, our hybrid recommender design is the first work to con-

sider a continuous EDA for user profile modelling in a recommender system.

The implementation of the continuous EDA is explained in subsection 3.3.2.

2.7 Summary

In this chapter, previous work on recommender systems has been reviewed

and novelty techniques to representing acoustical features and to model user

profiles has been presented. The next steps are to collect the dataset by

crawling online social information, to extract the acoustical features of a col-

lection of songs to represent them as n-dimensional vectors, to model the

user profiles by using EDAs, and therefore, to return a list of song recom-

mendations.

27



Chapter 3

Methodology

The methodology used to develop our hybrid music recommender consists

of four main stages. First, the collection of real world user-item data corre-

sponding to the play counts of specific songs and the fetching of audio clips

of the unique identified songs in the dataset. Secondly, the implementation

of the CDNN to represent the audio clips in terms of music genre proba-

bilities as n-dimensional vectors. Next, permutation EDA and a continuous

EDA are investigated to model user profiles based on the rated songs above

a threshold. Finally, the process of top-N recommendation for the baseline

and the hybrid recommender is described.

Every stage of our hybrid recommender is entirely developed in Python

2.71, although, they are implemented in different platforms, e.g., OS X

(v10.10.4) for the most part of the implementation, Ubuntu (14.04 LTS in-

stalled on VirtualBox 5.0.0) for intermediate time-frequency representation

and CentOS (Linux release 7.1.1503) for the data preprocessing and CDNN

1https://www.python.org/download/releases/2.7/

28



implementation.

3.1 Data collection

The Million Song Dataset (Bertin-Mahieux et al. 2011) is a collection of audio

features and metadata for a million contemporary popular music tracks which

provides ground truth for evaluation research in MIR. This collection is also

complemented by the Taste Profie subset which provides 48,373,586 triplets,

each of them consist of anonymised user ID, Echo Nest song ID and play

count. We choose this dataset because it is publicly available data and it

contains enough data for user modelling and recommender evaluation.

3.1.1 Taste Profile subset cleaning

Due to potential mismatches2 between song ID and track ID on the Echo

Nest database, it is required to filter out the wrong matches in the Taste

Profile subset. The cleaning process is illustrated in Figure 3.1

Figure 3.1: Diagram of the cleaning process of the Taste Profile subset

A script is implemented to discard the triplets that contain the song

identifiers from the mismatches text file. First, we load the file to read each

2http://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors

29



line of it to obtain song identifier. The identifiers are stored as elements of a

set object to construct a collection of unique elements. Next, due to the size

of the Taste Profile subset (about 3 GB, uncompressed), we load the dataset

by chunks of 20,000 triplets in a pandas3 dataframe to clean each chunk by

discarding the triplets that contains the song identifiers in the set object of

the previous step. The cleaning process takes around 2.47 minutes and we

obtain 45,795,100 triplets.

In addition to the cleaning process, we reduce significantly the size of the

dataset for experimental purposes. We only consider users with more than

1,000 played songs and select the identifiers of 1,500 most played songs. This

additional process takes around 3.23 minutes and we obtain 65,327 triplets.

The triplets are stored in a cPickle4 data stream (2.8 MB).

3.1.2 Fetching audio data

First, for each element of the list of 1,500 songs identifiers obtained in the

previous step is used to retrieve the associated Echo Nest track ID through a

script using the get tracks method from the Pyechonest5 package which allow

us to acquire track ID and preview URL for each song ID through Echo Nest

API. The reason behind this is 7digital API uses Echo Nest track ID instead

of song ID to retrieve any data from its catalogue. If the track information of

a song is not available, the script skips to retrieve the Echo Nest information

of the next song ID. At this point, it is useful to check if the provided 7digital

API keys, a preview URL, and the country parameter, e.g., ’GB’ to access to

3http://pandas.pydata.org/
4https://docs.python.org/2/library/pickle.html#module-cPickle
5http://echonest.github.io/pyechonest/

30



UK catalogue, work in the OAuth 1.0 Signature Reference Implementation6.

Next, for each preview URL, we can create a GET request using python-

oauth2 7 package, because it allows us to assign the nonce, the timestamp,

the signature method and the country parameters. The request is converted

to a URL to be opened with urlopen function from the urllib2 8 module, to

download a MP3 file (44.1 kHz, 128 kbps, stereo) of 30 to 60 seconds of

duration in a song repository.

Considering the Echo Nest API and 7digital API limited number of re-

quests (see Section 2.2), the process of fetching data from 1,500 song IDs

takes at least 8 hours, resulting in a total of 640 MP3 files.

Additionally, the script accumulates the Echo Nest song identifier, track

ID, artist name, song title and the 7digital preview audio URL for each

downloaded track in a text file only if the audio clip is available for download.

The generated text file is used for the preprocessing of the cleaned taste

profile dataset in subsection 3.2.1. The flowchart of the script is shown in

Figure 3.2

3.1.3 Intermediate time-frequency representation for

audio signals

Intermediate audio representation instead of waveform (time-domain) rep-

resentation is required to feed a CDNN according to Oord, Dieleman, and

Schrauwen (2013). The flowchart to obtain the time-frequency representa-

6http://7digital.github.io/oauth-reference-page/
7https://github.com/jasonrubenstein/python oauth2
8https://docs.python.org/2/library/urllib2.html

31



Figure 3.2: Flowchart of the fetching audio process

tion from raw audio content of the song repository assembled in the previous

section is shown in Figure 3.3.

Figure 3.3: Flowchart for time-frequency representation process

First, a list of absolute paths corresponding to the songs in the reposi-

tory is generated. The sequence of paths in the list is modified by random

shuffling. This new sequence of absolute paths is saved in a text file.

32



Second, for every path in the text file of randomised absolute paths, a

fragment equivalent to 3 seconds of the associated audio clip is loaded at

a sampling rate of 22,050 Hz and converted to mono channel. For every

fragment, a mel-scaled power spectrogram with 128 bands is computed from

windows of 1,024 samples with a hop size of 512 samples, resulting in a

spectrogram of 130 frames with 128 components. Hence, the spectrogram

is converted to logarithmic scale in dB using peak power as reference. The

functions load, feature.melspectrogram and logamplitude, correspondingly to

load an audio clip, spectrogram computation and logarithmic conversion,

from the LibROSA9 package are used.

To handle audio with LibROSA functions, it is recommended to use the

Samplerate10 package for efficient resampling. In our project, we consid-

ered to use the SoX11 cross-platform without success due to operating sys-

tem restrictions. Alternatively, we use the FFmpeg12 cross-platform and

libmp3lame0 13 packages for efficient resampling.

Finally, we store the absolute path and the log-mel-spectrogram values

of the 640 songs in a HDF514 data file.

In the particular case for the time-frequency representation of each audio

clip in the GTZAN dataset, we generate a list of the genre associated to

each audio fragment that represent the target values (ground truth). This

procedure for the GTZAN dataset is repeated for 9 times, considering the

9https://bmcfee.github.io/librosa/index.html
10https://pypi.python.org/pypi/scikits.samplerate/
11http://sox.sourceforge.net/
12https://www.ffmpeg.org/
13http://packages.ubuntu.com/precise/libmp3lame0
14https://www.hdfgroup.org/HDF5/

33



rest of 3-seconds fragments in each audio clip of the dataset for training,

validation and testing of the CDNN (see Section 3.3.1)

The time elapsed to obtain the time-frequency representation of the clips

in the GTZAN dataset with the procedure described above is about 55 sec-

onds, generating a HDF5 file (66.9 MB). Because of the number of MP3 files

in the song repository is less than the number of files of the GTZAN dataset,

the process is faster and the size of the HDF5 file is smaller (42.8 MB).

3.2 Data preprocessing

In order to obtain suitable representations for users’ interest in the taste

profile dataset and for songs’ spectrograms, it is necessary an additional

process of the data.

3.2.1 Rating from implicit user feedback

First, the text file of the downloaded MP3 metadata (see subsection 3.1.3) is

used to retain the triplets, from the cleaned taste profile subset, that contain

the song IDs of the available audio clips. A reduced taste profile dataset with

4,685 triplets is obtained, corresponding to information of 53 users.

The reduced taste profile dataset represent the user listening habits as

implicit feedback, i.e., play counts of songs, it is necessary to normalise the

listening habits as explicit feedback, i.e., range of values [1 . . . 5] that indicate

how much a user likes a song. Normalisation of play counts is computed with

the complementary cumulative distribution of play counts of a user, following

the procedure given by Celma (2008). Songs in the top 80 - 100% of the

34



distribution get a rating of 5, songs in the 60 - 80% range get a 4, songs in

the 40 - 60% range get a 3, songs in the 20 - 40% get a 2 and songs in the

0 - 20% range get a rating of 1. An exception for this allocation of ratings

comes out when the coefficient of variation, given by Equation (3.1):

CV =
σ

µ
(3.1)

where, σ is the standard deviation and µ is the mean of the play counts of a

user, is less or equal than 0.5. In that case, every song gets a rating of 3.

3.2.2 Standardise time-frequency representation

The logarithmic mel-scaled power spectrograms obtained in subsection 3.1.3

are normalised to have zero mean and unit variance in each frequency band,

using the fit and transform methods of the StandardScaler class from the

Scikit-learn (Pedregosa et al. 2011) package, as a common requirement of

several machine learning classifiers.

Additionally, the GTZAN normalised spectrograms dataset is split in

3 subsets: 500 spectrograms for training, 250 spectrograms for validation

and 250 spectrograms for testing. Each spectrogram is saved as a tuple

(spectrogram, tag) in a cPickle file, where tag is the number of the music

genre: 0 for blues, 1 for classical, 2 for country, 3 for disco, 4 for hiphop, 5

for jazz, 6 for metal, 7 for pop, 8 for reggae and 9 for rock.

35



3.3 Algorithms

The hybrid music recommender approach in this project can be considered

as implementation of feature augmentation method and a meta-level method

presented in subsection 2.3.5. First, user profiles are generated using the

rating matrix and the song vector representation. Next, the model generated

is the input of a CB recommender to produce top-N song recommendations.

The general model of our hybrid recommender is shown in Figure 3.4

Figure 3.4: Diagram of the hybrid music recommender

3.3.1 Probability of music genre representation

To represent an audio file in a 10-dimensional vector, whose dimensions cor-

respond to the 10 music genres specified in the GTZAN dataset, a CDNN

is implemented using Theano library. For intensive computation processes,

such as convolution, the implementation on equipment with Graphical Pro-

cessing Unit (GPU) acceleration is recommended. In this project, a CentOS

(Linux release 7.1.1503) server with a Tesla K40c15 GPU is exploited.

The scripts for logistic regression, multilayer perceptron and deep con-

volutional network designed for character recognition of MNIST16 dataset,

15http://www.nvidia.com/object/tesla-servers.html
16http://www.iro.umontreal.ca/ lisa/deep/data/mnist/mnist.pkl.gz

36



available on Deeplearning.net (2015) is adapted to our purpose of music genre

classification. ReLU and dropout functions are defined in the deep convolu-

tional network script.

CDNN architecture

Figure 3.5: Diagram of CDNN for music genre classification (Kereliuk,
Sturm, and Larsen 2015)

A similar architecture of a CDNN for music genre classification (Kereliuk,

Sturm, and Larsen 2015) is recreated in our project. A batch size of 20 and

a dropout rate of 0.20 for the convolutional layer units are considered.

Initially, the reshape of the 2-dimension normalised spectrograms (130

frames×128 frequency bands) obtained in subsection 3.2.2 to a 4-dimension

tensor, compatible with the input of the first convolutional layer (batch

size×1×130×128), is required.

The first convolutional layer consists of 32 filters, each one with a size

of 8 frames, with a max-pooling downsampling of 4, to reduce the size of

the spectrogram along the time axis. The size of the resulting spectrogram

37



is 30×128 and the output of this first convolutional layer is a 4-dimension

tensor with a size of 20×32×30×128.

The second convolutional layer consists of 32 filters, each one with a size

of 8 frames, with a max-pooling downsampling of 4, to reduce the size of

the spectrogram obtained in the first layer. The size of the new spectrogram

is 5×128 and the output of this second convolutional layer is a 4-dimension

tensor with a size of 20×32×5×128.

Following the convolution process, the reshape of the 4-dimensional tensor

of the output of the second convolutional layer is required to feed the fully

connected MLP. The MLP consists of 500 ReLUs.

Finally, the classification of music genre is accomplished with logistic

regression layer of the 500 output values from the MLP. This output layer

consists of 10 units with softmax activation function (see Equation (2.4)).

Learning parameters

The weights and biases of the units of the CDNN are the parameters to

be modelled by SGD to minimise a cost function. The cost function is the

negative log likelihood of the prediction in the output layer given the target

values, i.e., music genre ground truth.

The CDNN for training, validation and testing is run for 200 epochs, each

epoch equivalent to 50 iterations. The number of iterations corresponds to

the ratio between the number of spectrograms (1,000 for GTZAN dataset)

and the batch size.

According to Bengio (2012), the patience value is the minimum number

of training examples. In our project, the patience value is set at 1,000.

38



In our testing, after 9 trials in the CDNN, we obtain a best classification

error of 38.8 % using the spectrograms corresponding to the GTZAN dataset

(see Table 5.1). The weights and biases for this best classification error are

saved in a cPickle file to be applied as initial parameters of the CDNN for

vector representation.

Vector representation

The script of CDNN is adapted to produce the vector representation of the

spectrograms. This CDNN uses the weights and biases learnt in genre clas-

sification process as initial parameters.

A 10-dimension vector is produced by the softmax output layer. Each

dimension corresponds to a music genre and each value represents the prob-

ability of a song to belong to a specific music genre, given the normalised

spectrogram at the input layer.

3.3.2 User profile modelling

To model user profiles from the triplets in the normalised taste profile dataset,

we adapt the permutation EDA (see algorithm 1 on page 26) and the con-

tinuous EDA (see algorithm 2 on page 27). For both EDAs, we consider the

following:

• User representation Su = {(t1, ru,1), . . . , (ti, ru,i)|ru,i > r̄u}.

• Rating threshold r̄u} = 2, assuming that a user does not like songs

with ratings of 1 and 2 out of 5.

39



• The stopping criteria is the maximum number of generations limited

to 250.

Modelling with Permutation EDA

In the case of permutation EDA, the genre tags (0 for blues, 1 for classical, 2

for country, 3 for disco, 4 for hiphop, 5 for jazz, 6 for metal, 7 for pop, 8 for

reggae and 9 for rock) are considered as the keywords kn in the set Du and

the weights wn,i are 50 evenly spaced samples over the interval [0.1, 0.9], thus,

the size of the set Ku is N = 500 and the initial probability is cn,i = 1/500.

The population size is equal to u = 53, that is the number of users in the

normalised taste profile dataset. Instead of using the Monte Carlo method to

generate the initial population of profileu, 10 tuples (kn, wn,i) from Ku are

random sampled for each user. The number of top individuals M is a half of

the total of users. The process of sampling new individuals is preserved. The

adapted permutation EDA for user modelling is illustrated in Algorithm 3:

The time elapsed for modelling user profiles with the permutation EDA

is approximately 7.82 seconds.

Modelling with UMDAGc

The UMDAGc algorithm is adapted to select the top Msel individuals by using

the fitness function (Equation (2.5) on page 25) exploited by the permutation

EDA. The population size isM = 53 users, the selection parameter is τ = 0.5.

xi represent the probability value of the music genre dimension, i, in the

profileu vector.

In each generation, t, the mean value µi,t and the variance σ2
i,t is com-

40



Algorithm 3 Calculate profileu for users in taste profile

Require: set Du, weights wn,i
Require: population size u, MAXGEN
Require: M = Round(u/2)

Assign a weight wn,i to each kn to build a set Ku of size N
Assign a probability cn,i = 1/N to each (kn, wn,i)
Generate initial population of profileu
while generation < MAXGEN do

Compute each fitness(profileu)
Rank individuals by their fitness value
Select top M < N individuals
Update cn,i by counting the occurrences of (kn, wn,i) in the M individuals
profiles
Generate profileu by random sampling according to updated cn,i
generation← generation+ 1

end while
return profileu

puted for every dimension, i, along the Msel individuals vectors. For each

dimension, i.e., music genre, the normal distribution is calculated with its

corresponding mean value and variance, to estimate the individuals vectors

of the next generation. The time elapsed for modelling user profiles with

the continuous EDA is approximately 4.20 seconds.

3.3.3 Top-N songs recommendation

The final stage of the recommender systems implemented is to generate a list

of song recommendations according to the similarity values computed with

Equation (2.7) (see page 25).

41



Algorithm 4 Framework for UMDAGc to model users

Require: population size M
Require: selection parameter τ

Generate M individuals at random
Msel ←M · τ
t← 0
while t < MAXGEN do

Compute each fitness(profileu)
Rank individuals by their fitness value
Select top Msel individuals
µi,t ← 1

Msel

∑Msel

j=1 x
j
i

σ2
i,t ← 1

Msel−1
∑Msel

j=1 (xji − µi,t)2

pt(xi|µi,t, σ2
i,t)← 1√

2πσi,t
exp(−1

2
(
xi−µi,t
σi,t

)2)

Sample M individuals from pt(xi|µi,t, σ2
i,t)

t← t+ 1
end while

Top-N recommendations in CB baseline

The list of recommendations in a CB recommender is given by the similarities

between the items that a user has already rated and the new items. It is

assumed the user has not seen before the new items.

First, the similarity matrix between every item in the training set is

computed. Only the k = 30 most similar items are kept for each item.

Next, for each song that a user rated above the threshold (rating > 2), the k

neighbours are retrieved as a list of candidate items. The list is normalised

to have a maximum value of 1. The lists of candidates are appended. For the

repeated candidates, the similarity values are summed up. The N candidates

with higher similarity values are recommended to a user.

42



Top-N recommendations in hybrid music recommender

In our hybrid music model (see Figure 3.4 on page 36), the content based

filtering computes the similarity between a user interest profile and a each

song vector in the test set. The songs are ranked in descending order and

the first N songs of this ranking are recommended.

In our project, we experiment with different values for N, obtaining the

best results with the hybrid music recommender based on permutation EDA

for all the experiments. Refer to Section 5.2 for detailed results of evaluation.

3.4 Summary

In this chapter, we presented the collection and preprocessing of the taste

profile subset to model the user profiles with EDAs. As well, we presented

the procedure of time-frequency representation of the audio content to feed a

CDNN in order to obtain a 10-dimension vector representation corresponding

to the probability of a song to belong to a music genre. Also, we presented

the adapted architecture of the CDNN and the EDAs for hybrid recommen-

dation. In the following chapter, we introduce the evaluation method and

experiments to evaluate our hybrid recommender approach.

43



Chapter 4

Experiments

In order to evaluate the performance of a recommender system, there are

several scenarios to be considered depending on the structure of the dataset

and the prediction accuracy. It is therefore necessary to determine a suitable

experiment for the evaluation of our proposed hybrid music recommender

that employs a rating matrix and vector representation of songs as inputs to

produce top-N song recommendations.

In addition, the performance of our hybrid approaches is compared with

a pure content-based recommender algorithm.

4.1 Evaluation for recommender systems

4.1.1 Types of experiments

The scenarios for experiments requires to define an hypothesis, controlling

variables and generalization of the results. Three types of experiments (Shani

and Gunawardana 2009) can be used to compare and evaluate recommender

44



algorithms:

• Offline experiments: where recorded historic data of users’ ratings

are used to simulate online users behaviour. The aim of this type of

experiment is to refine approaches before testing with real users. On

the other hand, results may have biases due to distribution of users.

• User studies: where test subjects interact with the recommendation

system and its behaviour is recorded giving a large sets of quantita-

tive measurements. One disadvantage of this type of experiment is to

recruit subjects that represent the population of the users of the real

recommendation system.

• Online evaluation: where the designer of the recommender appli-

cation expect to influence the users’ behaviour. Usually, this type of

evaluation are run after extensive offline studies.

4.1.2 Evaluation strategies

On the other hand, evaluation of recommender systems can be classified

(Celma 2008) in:

• System-centric process has been extensively exploited in CF systems.

The accuracy of recommendations is based exclusively on users’ dataset

and is evaluated through predictive accuracy, decision based and rank

based metrics.

• Network-centric process examines other components of the recom-

mendation system, such as diversity of recommendations, and they are

45



measured as a complement of the metrics of system-centric evaluation.

• User-centric: The perceived quality and usefulness of recommenda-

tions for the users are measured via provided feedback.

4.1.3 Decision based metrics

Our hybrid recommender produces a list of songs for each user, hence, it

is necessary to evaluate the recommendation with a metrics derived from

confusion matrix that reflects the categorisation of test items as true positives

(TP), false positives (FP), true negatives (TN) and false negatives (FN). In

this project we consider the following metrics (Celma 2008):

• Precision is the ratio of correct positive predictions.

Precision =
TP

TP + FP
(4.1)

• Recall is the ratio of positive instances predicted as positive.

Recall =
TP

TP + FN
(4.2)

• F1 measure, is the harmonic relation of precision and recall.

Recall =
2× Precision×Recall
Precision+Recall

(4.3)

• Accuracy, is the ratio of correct predictions.

Recall =
TP + TN

TP + FP + TN + FN
(4.4)

46



4.2 Evaluation method

The hybrid music recommender system proposed in this project is evaluated

through an offline experiment and the results are presented with decision

based metrics described in the previous section.

4.2.1 Training set and test set

The normalised taste profile dataset (refer to subsection 3.2.1) is split in

a training and a test set. For each user in the dataset, a random sample

corresponding to 20 % of the total number of ratings is assigned to the test

set, and the rest 80 % is assigned to the training set. The split process is

iterated for 10 times, resulting in a total of 10 training and 10 test sets.

4.2.2 Top-N evaluation

For each song in the user test set, we look up if the song is included or not

in the list of top-N recommendations.

If the test song is in the top-N recommendation and if the rating of the

test song is above the threshold (rating > 2), we count as a true positive,

otherwise is counted as a false positive.

If the test song is not in the top-N recommendation and if the rating of

the test song is above the threshold, we count as a false negative, otherwise

is counted as a true positive.

47



Chapter 5

Results

5.1 Genre classification results

A total of 9 trials are executed for training, validating and testing the CDNN

using the normalised spectrograms of GTZAN dataset (see subsection 3.2.2).

We obtained the following results showed in Table 5.1.

Table 5.1: Genre classification results

Trial Validation error (%) Test error (%) Iterations Time elapsed (min.)

1 58.0 65.2 650 7.00
2 37.6 46.0 2150 13.07
3 39.6 46.0 700 7.54
4 35.6 36.8 550 6.01
5 36.4 40.0 250 5.47
6 40.4 44.8 150 5.41
7 32.4 40.4 800 8.64
8 36.0 38.8 250 5.42
9 34.0 38.8 850 9.14

For the initial trial, the error is higher because the weight and bias val-

ues for each unit of the layers in the deep learning classifier are randomly

48



initialised.

5.2 Recommender evaluation results

In general, the results demonstrate the hybrid music recommender based

on a permutation EDA presents a better performance compared with both

the CB recommender and the hybrid approach based on a continuous EDA.

Nevertheless, the recall values are lower in all cases. In Table 5.2, the results

of top-5 recommendation are shown.

Table 5.2: Evaluation of recommender systems (N=5)

Recommender Precision Recall F1 Accuracy

Content-based (baseline) 0.275 ± 0.087 0.010 ± 0.003 0.020 ± 0.007 0.681 ± 0.008
Hybrid (permutation EDA) 0.391 ± 0.182 0.013 ± 0.007 0.025 ± 0.013 0.685 ± 0.009
Hybrid (continuous UMDA) 0.318 ± 0.142 0.011 ± 0.005 0.021 ± 0.011 0.683 ± 0.009

In Table 5.3, the results of top-10 songs recommendation are shown. In

this case, the precision value improve for the CB recommender. The accuracy

values for all recommender systems tend to decrease.

Table 5.3: Evaluation of recommender systems (N=10)

Recommender Precision Recall F1 Accuracy

Content-based (baseline) 0.301 ± 0.059 0.022 ± 0.007 0.041 ± 0.012 0.678 ± 0.007
Hybrid (permutation EDA) 0.370 ± 0.073 0.024 ± 0.007 0.045 ± 0.013 0.682 ± 0.009
Hybrid (continuous UMDA) 0.309 ± 0.100 0.019 ± 0.007 0.036 ± 0.013 0.679 ± 0.009

In Table 5.4, the results of top-20 songs recommendation are shown. In

this case, the recall values rise for all the recommender systems, compared

with the top-5 and top-10 recommendations, but the precision and accuracy

tend to decrease. At this point, we can deduce that our hybrid recommender

49



approaches could improve the recall without losing reached precision if N is

in a value between 10 and 20.

Table 5.4: Evaluation of recommender systems (N=20)

Recommender Precision Recall F1 Accuracy

Content-based (baseline) 0.281 ± 0.052 0.041 ± 0.006 0.071 ± 0.010 0.666 ± 0.006
Hybrid (permutation EDA) 0.363 ± 0.041 0.047 ± 0.008 0.084 ± 0.014 0.676 ± 0.007
Hybrid (continuous UMDA) 0.302 ± 0.067 0.039 ± 0.011 0.070 ± 0.019 0.671 ± 0.010

50



Chapter 6

Conclusion

The whole aim of our project has been the design and the implementation

of an hybrid music recommender in order to mitigate the cold-start problem

in content-based recommender systems. We investigated several types of hy-

bridisation in recommender systems to choose a suitable architecture (shown

in 3.4) for the available datasets. To represent real world users and raw wave-

forms, we decided to investigate and implement state-of-the-art techniques.

Despite of the success in computer vision field, we found in our project

that convolutional deep neural networks achieve similar results to long-established

music genre classifier approaches in music information retrieval field.

Due to the natural selection concept associated to estimation of distri-

bution algorithms, we investigated and considered these optimisation tech-

niques for modelling users’ listening behaviour in terms of probabilities of

music genres from the songs in they listened.

On the other hand, we found that a limited number of genres for song

representation lead us to coarse predictions according to decision-based met-

51



rics.

6.1 Future work

For the future, we have the intention to enhance our hybrid music recom-

mender considering a wide range of music genres or latent vectors for item

representation. We shall work on investigating several configurations of con-

volutional deep neural networks and different types of deep learning tech-

niques, particularly, unsupervised learning approaches, for a better high-level

representation of audio waveforms. In addition, we will continue investigat-

ing the fascinating estimation of distribution algorithms, considering another

fitness functions to optimise, to model user profiles in recommender systems.

Finally, we also consider the evaluation of hybrid recommender with an online

experiment.

52



References

Bastien, Frédéric et al. (2012). Theano: new features and speed improvements.

Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Yoshua (2012). “Practical recommendations for gradient-based train-

ing of deep architectures”. In: Neural Networks: Tricks of the Trade.

Springer, pp. 437–478.

Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville (2015). “Deep Learn-

ing”. Book in preparation for MIT Press. url: http : / / www . iro .

umontreal.ca/~bengioy/dlbook.

Bergstra, James et al. (2010). “Theano: a CPU and GPU Math Expression

Compiler”. In: Proceedings of the Python for Scientific Computing Con-

ference (SciPy). Oral Presentation. Austin, TX.

Bertin-Mahieux, Thierry et al. (2011). “The Million Song Dataset”. In: Pro-

ceedings of the 12th International Conference on Music Information Re-

trieval (ISMIR 2011).

Blog.seagatesoft.com (2015). Belajar Sistem Perekomendasi Corat-coret di

Halaman Web. url: http://blog.seagatesoft.com/2013/07/14/

belajar-sistem-perekomendasi/ (visited on 08/29/2015).

53

http://www.iro.umontreal.ca/~bengioy/dlbook
http://www.iro.umontreal.ca/~bengioy/dlbook
http://blog.seagatesoft.com/2013/07/14/belajar-sistem-perekomendasi/
http://blog.seagatesoft.com/2013/07/14/belajar-sistem-perekomendasi/


Bouneffouf, Djallel (2013). “Towards User Profile Modelling in Recommender

System”. In: CoRR abs/1305.1114. url: http://arxiv.org/abs/1305.

1114.

boyd, danah m. and Nicole B. Ellison (2007). “Social Network Sites: Defini-

tion, History, and Scholarship”. In: Journal of Computer-Mediated Com-

munication 13.1, pp. 210–230. issn: 1083-6101. doi: 10.1111/j.1083-

6101.2007.00393.x. url: http://dx.doi.org/10.1111/j.1083-

6101.2007.00393.x.

Brown, Larry (2014). Accelerate Machine Learning with the cuDNN Deep

Neural Network Library. url: http://devblogs.nvidia.com/parallelforall/

accelerate-machine-learning-cudnn-deep-neural-network-library/

(visited on 08/30/2015).

Burke, R. (2002). “Hybrid recommender systems: Survey and experiments”.

In: User Modelling and User-Adapted Interaction 12.4, pp. 331–370. doi:

10.1023/A:1021240730564. url: http://www.scopus.com/inward/

record.url?eid=2-s2.0-0036959356&partnerID=40&md5=28885a102109be826507abc2435117a7.

Casey, M.A. et al. (2008). “Content-based music information retrieval: Cur-

rent directions and future challenges”. In: Proceedings of the IEEE 96.4,

pp. 668–696. doi: 10.1109/JPROC.2008.916370. url: http://www.

scopus.com/inward/record.url?eid=2-s2.0-64649105397&partnerID=

40&md5=2d8ec7231e10bc686566dd419ce47ae8.

Celma, Ò. (2008). “Music Recommendation and Discovery in the Long Tail”.

PhD thesis. Barcelona: Universitat Pompeu Fabra. url: http://mtg.

upf.edu/static/media/PhD_ocelma.pdf.

54

http://arxiv.org/abs/1305.1114
http://arxiv.org/abs/1305.1114
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://dx.doi.org/10.1023/A:1021240730564
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036959356&partnerID=40&md5=28885a102109be826507abc2435117a7
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036959356&partnerID=40&md5=28885a102109be826507abc2435117a7
http://dx.doi.org/10.1109/JPROC.2008.916370
http://www.scopus.com/inward/record.url?eid=2-s2.0-64649105397&partnerID=40&md5=2d8ec7231e10bc686566dd419ce47ae8
http://www.scopus.com/inward/record.url?eid=2-s2.0-64649105397&partnerID=40&md5=2d8ec7231e10bc686566dd419ce47ae8
http://www.scopus.com/inward/record.url?eid=2-s2.0-64649105397&partnerID=40&md5=2d8ec7231e10bc686566dd419ce47ae8
http://mtg.upf.edu/static/media/PhD_ocelma.pdf
http://mtg.upf.edu/static/media/PhD_ocelma.pdf


Celma, O., P. Herrera, and X. Serra (2006). “Bridging the music semantic

gap”. In: vol. 187. url: http://www.scopus.com/inward/record.url?

eid=2-s2.0-84884332226&partnerID=40&md5=d028cb2aca5d2d6d8f25a8a8b555edbf.

Dai, C. et al. (2014). “A personalized recommendation system for netease

dating site”. In: vol. 7. 13, pp. 1760–1765. url: http://www.scopus.

com/inward/record.url?eid=2-s2.0-84905828317&partnerID=40&

md5=90fbd8b20ad39757895bdee3ca58f459.

Deeplearning.net (2015). Convolutional Neural Networks (LeNet) DeepLearn-

ing 0.1 documentation. url: http://deeplearning.net/tutorial/

lenet.html (visited on 08/28/2015).

Ding, C., L. Ding, and W. Peng (2015). “Comparison of effects of different

learning methods on estimation of distribution algorithms”. In: Journal

of Software Engineering 9.3, pp. 451–468. doi: 10.3923/jse.2015.451.

468. url: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84924609049&partnerID=40&md5=e6419e97e218f8ef1600e3d21e6a9e36.

Gallagher, Marcus et al. (2007). “Bayesian inference in estimation of dis-

tribution algorithms”. In: Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on. IEEE, pp. 127–133.

Hejazi, S. A. and S. P. Stapleton (2015). “A self-organized network for load

balancing using intelligent distributed antenna system”. In: Canadian

Journal of Electrical and Computer Engineering 38.2, pp. 89–99. url:

www.scopus.com.

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups”. In: Signal

Processing Magazine, IEEE 29.6, pp. 82–97.

55

http://www.scopus.com/inward/record.url?eid=2-s2.0-84884332226&partnerID=40&md5=d028cb2aca5d2d6d8f25a8a8b555edbf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84884332226&partnerID=40&md5=d028cb2aca5d2d6d8f25a8a8b555edbf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905828317&partnerID=40&md5=90fbd8b20ad39757895bdee3ca58f459
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905828317&partnerID=40&md5=90fbd8b20ad39757895bdee3ca58f459
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905828317&partnerID=40&md5=90fbd8b20ad39757895bdee3ca58f459
http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://dx.doi.org/10.3923/jse.2015.451.468
http://dx.doi.org/10.3923/jse.2015.451.468
http://www.scopus.com/inward/record.url?eid=2-s2.0-84924609049&partnerID=40&md5=e6419e97e218f8ef1600e3d21e6a9e36
http://www.scopus.com/inward/record.url?eid=2-s2.0-84924609049&partnerID=40&md5=e6419e97e218f8ef1600e3d21e6a9e36
www.scopus.com


Hu, Y., C. Volinsky, and Y. Koren (2008). “Collaborative filtering for im-

plicit feedback datasets”. In: pp. 263–272. doi: 10.1109/ICDM.2008.22.

url: http://www.scopus.com/inward/record.url?eid=2-s2.0-

67049164166&partnerID=40&md5=01238b08208962fd0fdcc7503fa3af99.

Hypebot.com (2015). Streaming Music Discovery: It’s More Than Just Show-

ing Album Credits - hypebot. url: http://www.hypebot.com/hypebot/

2015 / 07 / streaming - music - discovery - its - more - than - just -

showing-album-credits.html (visited on 08/26/2015).

Jin, C. and S.-W. Jin (2014). “Software reliability prediction model based

on support vector regression with improved estimation of distribution

algorithms”. In: Applied Soft Computing Journal 15, pp. 113–120. doi:

10.1016/j.asoc.2013.10.016. url: http://www.scopus.com/

inward/record.url?eid=2-s2.0-84889065631&partnerID=40&md5=

6ba595eee679fa8355329646504b3ae3.

Kereliuk, Corey, Bob L Sturm, and Jan Larsen (2015). “Deep Learning and

Music Adversaries”. In: arXiv preprint arXiv:1507.04761.

Larranaga, Pedro and Jose A Lozano (2002). Estimation of distribution algo-

rithms: A new tool for evolutionary computation. Vol. 2. Springer Science

& Business Media.

LeCun, Yann (2015). MNIST Demos on Yann LeCun’s website. url: http:

//yann.lecun.com/exdb/lenet/ (visited on 08/30/2015).

Liang, T. et al. (2014). “A hybrid recommendation model based on estimation

of distribution algorithms”. In: Journal of Computational Information

Systems 10.2, pp. 781–788. doi: 10.12733/jcis9623. url: http://

56

http://dx.doi.org/10.1109/ICDM.2008.22
http://www.scopus.com/inward/record.url?eid=2-s2.0-67049164166&partnerID=40&md5=01238b08208962fd0fdcc7503fa3af99
http://www.scopus.com/inward/record.url?eid=2-s2.0-67049164166&partnerID=40&md5=01238b08208962fd0fdcc7503fa3af99
http://www.hypebot.com/hypebot/2015/07/streaming-music-discovery-its-more-than-just-showing-album-credits.html
http://www.hypebot.com/hypebot/2015/07/streaming-music-discovery-its-more-than-just-showing-album-credits.html
http://www.hypebot.com/hypebot/2015/07/streaming-music-discovery-its-more-than-just-showing-album-credits.html
http://dx.doi.org/10.1016/j.asoc.2013.10.016
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889065631&partnerID=40&md5=6ba595eee679fa8355329646504b3ae3
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889065631&partnerID=40&md5=6ba595eee679fa8355329646504b3ae3
http://www.scopus.com/inward/record.url?eid=2-s2.0-84889065631&partnerID=40&md5=6ba595eee679fa8355329646504b3ae3
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://dx.doi.org/10.12733/jcis9623
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b


www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&

partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b.

Lops, Pasquale, Marco de Gemmis, and Giovanni Semeraro (2011). “Content-

based Recommender Systems: State of the Art and Trends”. English. In:

Recommender Systems Handbook. Ed. by Francesco Ricci et al. Springer

US, pp. 73–105. isbn: 978-0-387-85819-7. doi: 10.1007/978-0-387-

85820-3_3. url: http://dx.doi.org/10.1007/978-0-387-85820-

3_3.

Melville, Prem and Vikas Sindhwani (2010). “Recommender systems”. In:

Encyclopedia of machine learning. Springer, pp. 829–838.

Oord, Aaron van den, Sander Dieleman, and Benjamin Schrauwen (2013).

“Deep content-based music recommendation”. In: Advances in Neural

Information Processing Systems 26. Ed. by C.J.C. Burges et al. Curran

Associates, Inc., pp. 2643–2651. url: http://papers.nips.cc/paper/

5004-deep-content-based-music-recommendation.pdf.

Park, Y.-J. and A. Tuzhilin (2008). “The long tail of recommender systems

and how to leverage it”. In: pp. 11–18. doi: 10.1145/1454008.1454012.

url: http://www.scopus.com/inward/record.url?eid=2-s2.0-

63449136183&partnerID=40&md5=648e50cac2d99764f891b5bc4b97bbfe.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research 12, pp. 2825–2830.

Pelikan, Martin, Mark W Hauschild, and Fernando G Lobo (2015). “Estima-

tion of Distribution Algorithms”. In: Springer Handbook of Computational

Intelligence. Springer, pp. 899–928.

57

http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892865461&partnerID=40&md5=a2927d36b493e8ef4d1cdab3055fa68b
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf
http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf
http://dx.doi.org/10.1145/1454008.1454012
http://www.scopus.com/inward/record.url?eid=2-s2.0-63449136183&partnerID=40&md5=648e50cac2d99764f891b5bc4b97bbfe
http://www.scopus.com/inward/record.url?eid=2-s2.0-63449136183&partnerID=40&md5=648e50cac2d99764f891b5bc4b97bbfe


Putzke, Johannes et al. (2014). “Cross-cultural gender differences in the

adoption and usage of social media platforms An exploratory study

of Last.FM”. In: Computer Networks 75, Part B. Special Issue on On-

line Social NetworksThe Connectedness, Pervasiveness and Ubiquity of

Online Social Networks, pp. 519 –530. issn: 1389-1286. doi: http://

dx.doi.org/10.1016/j.comnet.2014.08.027. url: http://www.

sciencedirect.com/science/article/pii/S1389128614003302.

Recommendation Engine (2013). url: https://spatnaik77.wordpress.

com/2013/07/17/recommendation-engine/ (visited on 08/28/2015).

Recommender Systems (2012). [Accessed: 26th August 2015]. url: http:

//recommender-systems.org/.

Ringen, Jonathan (2015). Spotify, Apple Music, And The Streaming Wars: 5

Things We’ve Learned. url: http://www.fastcompany.com/3048653/

innovation-agents/listen-up (visited on 08/26/2015).

Santana, Roberto et al. (2010). “Mateda-2.0: A MATLAB Package for the

Implementation and Analysis of Estimation of Distribution Algorithms”.

In: Journal of Statistical Software 35.7, pp. 1–30. issn: 1548-7660. url:

http://www.jstatsoft.org/v35/i07.

Sarwar, Badrul et al. (2001). “Item-based collaborative filtering recommen-

dation algorithms”. In: Proceedings of the 10th international conference

on World Wide Web. ACM, pp. 285–295.

Shani, Guy and Asela Gunawardana (2009). Evaluating Recommender Sys-

tems. Tech. rep. MSR-TR-2009-159. url: http://research.microsoft.

com/apps/pubs/default.aspx?id=115396.

58

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.08.027
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.08.027
http://www.sciencedirect.com/science/article/pii/S1389128614003302
http://www.sciencedirect.com/science/article/pii/S1389128614003302
https://spatnaik77.wordpress.com/2013/07/17/recommendation-engine/
https://spatnaik77.wordpress.com/2013/07/17/recommendation-engine/
http://recommender-systems.org/
http://recommender-systems.org/
http://www.fastcompany.com/3048653/innovation-agents/listen-up
http://www.fastcompany.com/3048653/innovation-agents/listen-up
http://www.jstatsoft.org/v35/i07
http://research.microsoft.com/apps/pubs/default.aspx?id=115396
http://research.microsoft.com/apps/pubs/default.aspx?id=115396


Sigtia, S. and S. Dixon (2014). “Improved music feature learning with deep

neural networks”. In: pp. 6959–6963. doi: 10 . 1109 / ICASSP . 2014 .

6854949. url: http://www.scopus.com/inward/record.url?eid=2-

s2.0-84905259152&partnerID=40&md5=3441dfa8c7998a8eb39f668d43efb8a1.

Smith, Tom (2009). “The social media revolution”. In: International journal

of market research 51.4, pp. 559–561.

Sturm, B.L. (2012). “An analysis of the GTZAN music genre dataset”. In:

pp. 7–12. doi: 10.1145/2390848.2390851. url: http://www.scopus.

com/inward/record.url?eid=2-s2.0-84870497334&partnerID=40&

md5=40a48c1c9d787308dd315694b54b64ec.

Tzanetakis, G. and P. Cook (2002). “Musical genre classification of au-

dio signals”. In: IEEE Transactions on Speech and Audio Processing

10.5, pp. 293–302. doi: 10.1109/TSA.2002.800560. url: http://

www.scopus.com/inward/record.url?eid=2- s2.0- 0036648502&

partnerID=40&md5=72d2fee186b42c9998f13415cbb79eea.

Ufldl.stanford.edu (2015). Unsupervised Feature Learning and Deep Learning

Tutorial. url: http://ufldl.stanford.edu/tutorial/supervised/

ConvolutionalNeuralNetwork/ (visited on 08/30/2015).

Weston, Jason et al. (2012). “Latent collaborative retrieval”. In: arXiv preprint

arXiv:1206.4603.

Yao, L. et al. (2015). “Unified collaborative and content-based web ser-

vice recommendation”. In: IEEE Transactions on Services Computing

8.3, pp. 453–466. doi: 10.1109/TSC.2014.2355842. url: http://

www.scopus.com/inward/record.url?eid=2-s2.0-84932619562&

partnerID=40&md5=4483a697e12fc53f620393586f85aebe.

59

http://dx.doi.org/10.1109/ICASSP.2014.6854949
http://dx.doi.org/10.1109/ICASSP.2014.6854949
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905259152&partnerID=40&md5=3441dfa8c7998a8eb39f668d43efb8a1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84905259152&partnerID=40&md5=3441dfa8c7998a8eb39f668d43efb8a1
http://dx.doi.org/10.1145/2390848.2390851
http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334&partnerID=40&md5=40a48c1c9d787308dd315694b54b64ec
http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334&partnerID=40&md5=40a48c1c9d787308dd315694b54b64ec
http://www.scopus.com/inward/record.url?eid=2-s2.0-84870497334&partnerID=40&md5=40a48c1c9d787308dd315694b54b64ec
http://dx.doi.org/10.1109/TSA.2002.800560
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502&partnerID=40&md5=72d2fee186b42c9998f13415cbb79eea
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502&partnerID=40&md5=72d2fee186b42c9998f13415cbb79eea
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036648502&partnerID=40&md5=72d2fee186b42c9998f13415cbb79eea
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://dx.doi.org/10.1109/TSC.2014.2355842
http://www.scopus.com/inward/record.url?eid=2-s2.0-84932619562&partnerID=40&md5=4483a697e12fc53f620393586f85aebe
http://www.scopus.com/inward/record.url?eid=2-s2.0-84932619562&partnerID=40&md5=4483a697e12fc53f620393586f85aebe
http://www.scopus.com/inward/record.url?eid=2-s2.0-84932619562&partnerID=40&md5=4483a697e12fc53f620393586f85aebe


Yin, H. et al. (2012). “Challenging the long tail recommendation”. In: vol. 5.

9, pp. 896–907. url: http://www.scopus.com/inward/record.url?

eid=2-s2.0-84863735354&partnerID=40&md5=2bd887772ba832fbbb4631afd25514d9.

Yoshii, K. et al. (2008). “An efficient hybrid music recommender system us-

ing an incrementally trainable probabilistic generative model”. In: IEEE

Transactions on Audio, Speech and Language Processing 16.2, pp. 435–

447. doi: 10.1109/TASL.2007.911503. url: http://www.scopus.com/

inward/record.url?eid=2-s2.0-39649112098&partnerID=40&md5=

6827f82844ae1da58a6fa95caf5092d9.

60

http://www.scopus.com/inward/record.url?eid=2-s2.0-84863735354&partnerID=40&md5=2bd887772ba832fbbb4631afd25514d9
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863735354&partnerID=40&md5=2bd887772ba832fbbb4631afd25514d9
http://dx.doi.org/10.1109/TASL.2007.911503
http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098&partnerID=40&md5=6827f82844ae1da58a6fa95caf5092d9
http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098&partnerID=40&md5=6827f82844ae1da58a6fa95caf5092d9
http://www.scopus.com/inward/record.url?eid=2-s2.0-39649112098&partnerID=40&md5=6827f82844ae1da58a6fa95caf5092d9

	Introduction
	Motivation
	Aims
	Thesis outline

	Background
	Online Social Networks
	Music services platforms
	Recommender Systems
	Collaborative filtering
	Content-based filtering
	Item Representation
	User Modelling
	Hybrid recommender approaches

	Music Information Retrieval
	Genre classification
	Music recommender systems

	Deep Learning
	Deep Neural Networks
	Convolutional Deep Neural Networks

	Estimation of Distribution Algorithms
	A Hybrid Recommendation Model Based on EDA
	Continuous Univariate Marginal Distribution Algorithm

	Summary

	Methodology
	Data collection
	Taste Profile subset cleaning
	Fetching audio data
	Intermediate time-frequency representation for audio signals

	Data preprocessing
	Rating from implicit user feedback
	Standardise time-frequency representation

	Algorithms
	Probability of music genre representation
	User profile modelling
	Top-N songs recommendation

	Summary

	Experiments
	Evaluation for recommender systems
	Types of experiments
	Evaluation strategies
	Decision based metrics

	Evaluation method
	Training set and test set
	Top-N evaluation


	Results
	Genre classification results
	Recommender evaluation results

	Conclusion
	Future work

	References

