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"Music doesn’t have any special meaning; it depends what it's attached
to.” (Oliver Sacks 1933-2015)
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Aim and Motivations

Design and implement a hybrid music recommender to mitigate the
cold-start problem in a content-based recommendation strategy.
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Aim and Motivations

Design and implement a hybrid music recommender to mitigate the
cold-start problem in a content-based recommendation strategy.

@ Implement a convolutional deep neural network (CDNN) to obtain
high-level representation of an audio file.

o Investigate Estimation of Distribution Algorithms (EDAs) to model
user profiles in terms of probabilities of music genres preferences.
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Recommender Systems

Hybrid music recommender (Yoshii et al. 2008)
@ “bag of timbres” to represent acoustic features.

@ Three-way aspect model: “unobserved’ genre
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Recommender Systems

Hybrid music recommender (Yoshii et al. 2008)
@ “bag of timbres” to represent acoustic features.
@ Three-way aspect model: “unobserved’ genre
Deep content-based music recommendation (Oord et al. 2013)
@ CDNN for latent vector representation
@ Million Song Dataset
Hybrid recommender based on EDA (Liang, T. et al. 2014)
o TF-IDF for item attributes
@ Movielens dataset
@ Permutation EDA
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Hybrid music recommender design

Fundamental tasks:
@ User modelling
@ Information filtering
Required data:
@ User-item matrix: Taste profile dataset (53 users)

@ Audio clips: 7digital UK catalogue (640 clips)
Song representation:

@ 10-dimensional vector

@ Probability to belong to a music genre
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Hybrid music recommender approach

o Feature augmentation
@ Meta-level

Meta-level
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Feature Song
‘extraction vectors
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Probability of music genre
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Figure: CDNN for music genre classification (Kereliuk et al. 2015)
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Estimation of Distribution Algorithms (EDAs)
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Figure: Flowchart for EDA (Ding et al. 2015)
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User profile modelling

With permutation EDA:
e 10 tags (GTZAN) equivalent to keywords
@ 50 weights: evenly spaced over the inverval [0.1,...,0.9]
With continuous EDA:
@ Each genre considered as a dimension
@ Compute mean and covariance for each dimension along individuals

@ Sample from normal distribution
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Genre classification

Table: Genre classification results

Trial  Validation error (%) Test error (%) Iter. Time elapsed (min.)

1 58.0 65.2 650 7.00
2 37.6 46.0 2150 13.07
3 39.6 46.0 700 7.54
4 35.6 36.8 550 6.01
5 36.4 40.0 250 5.47
6 40.4 44.8 150 5.41
7 32.4 40.4 800 8.64
8 36.0 38.8 250 5.42
9 34.0 38.8 850 9.14
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Top - N recommendation

Table 5.2: Evaluation of recommender systems (N=>5)

Recommender Precision Recall F1 Accuracy
Content-based (baseline) 0.275 £ 0.087  0.010 £ 0.003  0.020 + 0.007  0.681 =+ 0.008
Hybrid (permutation EDA) 0.391 + 0.182 0.013 + 0.007 0.025 + 0.013 0.685 + 0.009
Hybrid (continuous UMDA)  0.318 & 0.142 0.011 + 0.005 0.021 £+ 0.011 0.683 + 0.009

Table 5.3: Evaluation of recommender systems (N=10)

Recommender Precision Recall F1 Accuracy
Content-based (baseline) 0.301 £0.059  0.022 &+ 0.007 0.041 £ 0.012  0.678 £ 0.007
Hybrid (permutation EDA) 0.370 &+ 0.073 0.024 + 0.007 0.045 + 0.013 0.682 + 0.009
Hybrid (continuous UMDA)  0.309 £ 0.100  0.019 + 0.007  0.036 £+ 0.013  0.679 + 0.009

Table 5.4: Evaluation of recommender systems (N=20)

Recommender Precision Recall F1 Accuracy
Content-based (baseline) 0.281 £0.052  0.041 £0.006 0.071 £ 0.010  0.666 + 0.006
Hybrid (permutation EDA) 0.363 £ 0.041 0.047 + 0.008 0.084 + 0.014 0.676 = 0.007
Hybrid (continuous UMDA)  0.302 £ 0.067 0.039 £+ 0.011 0.070 £+ 0.019 0.671 = 0.010
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Conclusions and future work

@ CDNN produce similar results to long-established music genre
classifiers

@ Hybrid permutation EDA outperforms CB
@ Investigate unsupervised deep learning

@ Online evaluation
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Questions?
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