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”Music doesn’t have any special meaning; it depends what it’s attached
to.” (Oliver Sacks 1933-2015)
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Aim and Motivations

Design and implement a hybrid music recommender to mitigate the
cold-start problem in a content-based recommendation strategy.

Implement a convolutional deep neural network (CDNN) to obtain
high-level representation of an audio file.

Investigate Estimation of Distribution Algorithms (EDAs) to model
user profiles in terms of probabilities of music genres preferences.
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Recommender Systems

Hybrid music recommender (Yoshii et al. 2008)

“bag of timbres” to represent acoustic features.

Three-way aspect model: “unobserved” genre

Deep content-based music recommendation (Oord et al. 2013)

CDNN for latent vector representation

Million Song Dataset

Hybrid recommender based on EDA (Liang, T. et al. 2014)

TF-IDF for item attributes

Movielens dataset

Permutation EDA
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Hybrid music recommender design

Fundamental tasks:

User modelling

Information filtering

Required data:

User-item matrix: Taste profile dataset (53 users)

Audio clips: 7digital UK catalogue (640 clips)

Song representation:

10-dimensional vector

Probability to belong to a music genre
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Hybrid music recommender approach

Feature augmentation

Meta-level
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Probability of music genre

Figure: CDNN for music genre classification (Kereliuk et al. 2015)
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Estimation of Distribution Algorithms (EDAs)

Figure: Flowchart for EDA (Ding et al. 2015)
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User profile modelling

With permutation EDA:

10 tags (GTZAN) equivalent to keywords

50 weights: evenly spaced over the inverval [0.1, . . . , 0.9]

With continuous EDA:

Each genre considered as a dimension

Compute mean and covariance for each dimension along individuals

Sample from normal distribution
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Genre classification

Table: Genre classification results

Trial Validation error (%) Test error (%) Iter. Time elapsed (min.)

1 58.0 65.2 650 7.00
2 37.6 46.0 2150 13.07
3 39.6 46.0 700 7.54
4 35.6 36.8 550 6.01
5 36.4 40.0 250 5.47
6 40.4 44.8 150 5.41
7 32.4 40.4 800 8.64
8 36.0 38.8 250 5.42
9 34.0 38.8 850 9.14

Paulo Esteban Chiliguano Torres (QMUL) Hybrid music recommender September 1st, 2015 11 / 14



Top - N recommendation
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Conclusions and future work

CDNN produce similar results to long-established music genre
classifiers

Hybrid permutation EDA outperforms CB

Investigate unsupervised deep learning

Online evaluation
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Questions?
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