annotate paper/refs.bib @ 47:b0186d4a4496 tip

Move 7Digital dataset to Downloads
author Paulo Chiliguano <p.e.chiliguano@se14.qmul.ac.uk>
date Sat, 09 Jul 2022 00:50:43 -0500
parents c268fcd77848
children
rev   line source
p@32 1 @InProceedings{C2,
p@32 2 author = "Jones, C.D. and Smith, A.B. and Roberts, E.F.",
p@32 3 title = "Article Title",
p@32 4 booktitle = "Proceedings Title",
p@32 5 organization = "IEEE",
p@32 6 year = "2003",
p@32 7 volume = "II",
p@32 8 pages = "803-806"
p@32 9 }
p@32 10
p@32 11
p@32 12 @incollection{melville2010recommender,
p@32 13 title={Recommender systems},
p@32 14 author={Melville, Prem and Sindhwani, Vikas},
p@32 15 booktitle={Encyclopedia of machine learning},
p@32 16 pages={829--838},
p@32 17 year={2010},
p@32 18 publisher={Springer}
p@32 19 }
p@32 20
p@32 21
p@32 22 @incollection{Lops2011,
p@32 23 year={2011},
p@32 24 isbn={978-0-387-85819-7},
p@32 25 booktitle={Recommender Systems Handbook},
p@32 26 editor={Ricci, Francesco and Rokach, Lior and Shapira, Bracha and Kantor, Paul B.},
p@32 27 doi={10.1007/978-0-387-85820-3_3},
p@32 28 title={Content-based Recommender Systems: State of the Art and Trends},
p@32 29 url={http://dx.doi.org/10.1007/978-0-387-85820-3_3},
p@32 30 publisher={Springer US},
p@32 31 author={Lops, Pasquale and de Gemmis, Marco and Semeraro, Giovanni},
p@32 32 pages={73-105},
p@32 33 language={English}
p@32 34 }
p@32 35
p@32 36
p@32 37 @incollection{NIPS2013_5004,
p@32 38 title = {Deep content-based music recommendation},
p@32 39 author = {van den Oord, Aaron and Dieleman, Sander and Schrauwen, Benjamin},
p@32 40 booktitle = {Advances in Neural Information Processing Systems 26},
p@32 41 editor = {C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger},
p@32 42 pages = {2643--2651},
p@32 43 year = {2013},
p@32 44 publisher = {Curran Associates, Inc.},
p@32 45 url = {http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf}
p@32 46 }
p@32 47
p@32 48
p@32 49 @incollection{pelikan2015estimation,
p@32 50 title={Estimation of Distribution Algorithms},
p@32 51 author={Pelikan, Martin and Hauschild, Mark W and Lobo, Fernando G},
p@32 52 booktitle={Springer Handbook of Computational Intelligence},
p@32 53 pages={899--928},
p@32 54 year={2015},
p@32 55 publisher={Springer}
p@32 56 }
p@32 57
p@32 58
p@32 59 @ARTICLE{Ding2015451,
p@32 60 author={Ding, C. and Ding, L. and Peng, W.},
p@32 61 title={Comparison of effects of different learning methods on estimation of distribution algorithms},
p@32 62 journal={Journal of Software Engineering},
p@32 63 year={2015},
p@32 64 volume={9},
p@32 65 number={3},
p@32 66 pages={451-468},
p@32 67 doi={10.3923/jse.2015.451.468},
p@32 68 note={},
p@32 69 url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84924609049&partnerID=40&md5=e6419e97e218f8ef1600e3d21e6a9e36},
p@32 70 document_type={Article},
p@32 71 source={Scopus},
p@32 72 }
p@32 73
p@32 74
p@32 75 @unpublished{Bengio-et-al-2015-Book,
p@32 76 title={Deep Learning},
p@32 77 author={Yoshua Bengio and Ian J. Goodfellow and Aaron Courville},
p@32 78 note={Book in preparation for MIT Press},
p@32 79 url={http://www.iro.umontreal.ca/~bengioy/dlbook},
p@32 80 year={2015}
p@32 81 }
p@32 82
p@32 83
p@32 84 @INPROCEEDINGS{Bertin-Mahieux2011,
p@32 85 author = {Thierry Bertin-Mahieux and Daniel P.W. Ellis and Brian Whitman and Paul Lamere},
p@32 86 title = {The Million Song Dataset},
p@32 87 booktitle = {{Proceedings of the 12th International Conference on Music Information
p@32 88 Retrieval ({ISMIR} 2011)}},
p@32 89 year = {2011},
p@32 90 owner = {thierry},
p@32 91 timestamp = {2010.03.07}
p@32 92 }
p@32 93
p@32 94
p@32 95 @phdthesis {1242,
p@32 96 title = {Music Recommendation and Discovery in the Long Tail},
p@32 97 year = {2008},
p@32 98 school = {Universitat Pompeu Fabra},
p@32 99 address = {Barcelona},
p@32 100 abstract = {<p class="small">
p@32 101 Music consumption is biased towards a few popular artists. For instance, in 2007 only 1\% of
p@32 102 all digital tracks accounted for 80\% of all sales. Similarly, 1,000 albums accounted for 50\%
p@32 103 of all album sales, and 80\% of all albums sold were purchased less than 100 times. There is
p@32 104 a need to assist people to filter, discover, personalise and recommend from the huge amount
p@32 105 of music content available along the Long Tail.
p@32 106 </p>
p@32 107 <p class="small">
p@32 108 Current music recommendation algorithms try to
p@32 109 accurately predict what people demand to listen to. However, quite
p@32 110 often these algorithms tend to recommend popular -or well-known to the
p@32 111 user- music, decreasing the effectiveness of the recommendations. These
p@32 112 approaches focus on improving the accuracy of the recommendations. That
p@32 113 is, try to make
p@32 114 accurate predictions about what a user could listen to, or buy next,
p@32 115 independently of how
p@32 116 useful to the user could be the provided recommendations.
p@32 117 </p>
p@32 118 <p class="small">
p@32 119 In this Thesis we stress the importance of the user{\textquoteright}s
p@32 120 perceived quality of the recommendations. We model the Long Tail curve
p@32 121 of artist popularity to predict -potentially-
p@32 122 interesting and unknown music, hidden in the tail of the popularity
p@32 123 curve. Effective recommendation systems should promote novel and
p@32 124 relevant material (non-obvious recommendations), taken primarily from
p@32 125 the tail of a popularity distribution.
p@32 126 </p>
p@32 127 <p class="small">
p@32 128 The main contributions of this Thesis are: <em>(i)</em> a novel network-based approach for
p@32 129 recommender systems, based on the analysis of the item (or user) similarity graph, and the
p@32 130 popularity of the items, <em>(ii)</em> a user-centric evaluation that measures the user{\textquoteright}s relevance
p@32 131 and novelty of the recommendations, and <em>(iii)</em> two prototype systems that implement the
p@32 132 ideas derived from the theoretical work. Our findings have significant implications for
p@32 133 recommender systems that assist users to explore the Long Tail, digging for content they
p@32 134 might like.
p@32 135 </p>
p@32 136 },
p@32 137 url = {http://mtg.upf.edu/static/media/PhD_ocelma.pdf},
p@32 138 author = {Celma, \`{O}.}
p@32 139 }
p@32 140
p@32 141
p@32 142 @inproceedings{gallagher2007bayesian,
p@32 143 title={Bayesian inference in estimation of distribution algorithms},
p@32 144 author={Gallagher, Marcus and Wood, Ian and Keith, Jonathan and Sofronov, George},
p@32 145 booktitle={Evolutionary Computation, 2007. CEC 2007. IEEE Congress on},
p@32 146 pages={127--133},
p@32 147 year={2007},
p@32 148 organization={IEEE}
p@32 149 }
p@32 150
p@32 151